• Title/Summary/Keyword: Non-Noise Pixels

Search Result 48, Processing Time 0.024 seconds

Application Feasibility Study of Non-local Means Algorithm in a Miniaturized Vein Near-infrared Imaging System (정맥 관찰용 소형 근적외선 영상 시스템에서의 비지역적평균 알고리즘 적용 가능성 연구)

  • Hyun-Woo Jeong;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.679-684
    • /
    • 2023
  • Venous puncture is widely used to obtain blood samples for pathological examination. Because the invasive venipuncture method using a needle is repeatedly performed, the pain suffered by the patient increases, so our research team pre-developed a miniaturized near-infrared (NIR) imaging system in advance. To improve the image quality of the acquired NIR images, this study aims to model the non-local means (NLM) algorithm, which is well known to be efficient in noise reduction, and analyze its applicability in the system. The developed NIR imaging system is based on the principle that infrared rays pass through dichroic and long-pass filters and are detected by a CMOS sensor module. The proposed NLM algorithm is modeled based on the principle of replacing the pixel from which noise is to be removed with a value that reflects the distances between surrounding pixels. After acquiring an NIR image with a central wavelength of 850 nm, the NLM algorithm was applied to segment the final vein area through histogram equalization. As a result, the coefficient of variation of the NIR image of the vein using the NLM algorithm was 0.247 on average, which was an excellent result compared to conventional filtering methods. In addition, the dice similarity coefficient value of the NLM algorithm was improved by 62.91 and 9.40%, respectively, compared to the median filter and total variation methods. In conclusion, we demonstrated that the NLM algorithm can acquire accurate segmentation of veins acquired with a NIR imaging system.

Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data (KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교)

  • Chung, Minkyung;Han, Youkyung;Choi, Jaewan;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1427-1443
    • /
    • 2018
  • Object-based image analysis (OBIA) allows higher computation efficiency and usability of information inherent in the image, as it reduces the complexity of the image while maintaining the image properties. Superpixel methods oversegment the image with a smaller image unit than an ordinary object segment and well preserve the edges of the image. SLIC (Simple linear iterative clustering) is known for outperforming the previous superpixel methods with high image segmentation quality. Although the input parameter for SLIC, number of superpixels has considerable influence on image segmentation results, impact analysis for SLIC parameter has not been investigated enough. In this study, we performed optimal parameter analysis and evaluation of change detection for SLIC-based superpixel techniques using KOMPSAT data. Forsuperpixel generation, three superpixel methods (SLIC; SLIC0, zero parameter version of SLIC; SNIC, simple non-iterative clustering) were used with superpixel sizes in ranges of $5{\times}5$ (pixels) to $50{\times}50$ (pixels). Then, the image segmentation results were analyzed for how well they preserve the edges of the change detection reference data. Based on the optimal parameter analysis, image segmentation boundaries were obtained from difference image of the bi-temporal images. Then, DBSCAN (Density-based spatial clustering of applications with noise) was applied to cluster the superpixels to a certain size of objects for change detection. The changes of features were detected for each superpixel and compared with reference data for evaluation. From the change detection results, it proved that better change detection can be achieved even with bigger superpixel size if the superpixels were generated with high regularity of size and shape.

A Study on Automatic Coregistration and Band Selection of Hyperion Hyperspectral Images for Change Detection (변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구)

  • Kim, Dae-Sung;Kim, Yong-Il;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • This study focuses on co-registration and band selection, which are one of the pre-processing steps to apply the change detection technique using hyperspectral images. We carried out automatic co-registration by using the SIFT algorithm which performance was already established in the computer vision fields, and selected the bands fur change detection by estimating the noise of image through the PIFs reflecting the radiometric consistency. The EM algorithm was also applied to select the band objectively. Hyperion images were used for the proposed techniques, and non-calibrated bands and striping noises contained in Hyperion image were removed. Throughout the results, we could develop the reliable co-registration procedure which coincided with accuracy within 0.2 pixels (RMSE) for change detection, and verified that band selection depending on the visual inspection could be objective by extracting the PIFs.

A study on correlation-based fingerprint recognition method (광학적 상관관계를 기반으로 하는 지문인식 방법에 관한 연구)

  • 김상백;주성현;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.493-500
    • /
    • 2002
  • Fingerprint recognition is concerned with fingerprint acquisition and matching. Our research was focused on a fingerprint matching method using an inkless fingerprint input sensor at the fingerprint acquisition step. Since an inkless fingerprint sensor produces a digital-image-processed fingerprint image, we did not consider noise that can happen while acquiring the fingerprint. And making the user attempt fingerprint input as random, we considered image distortion that translation and rotation are included as complex. NJTC algorithm is used for fingerprint identification and verification. The method to find the center of the fingerprint is added in the NJTC algorithm to supplement discrimination of fingerprint recognition. From this center point, we decided the optimum cropping size for effective matching with pixels and demonstrated that the proposed method has high discrimination and high efficiency.

Comparative Analysis among Radar Image Filters for Flood Mapping (홍수매핑을 위한 레이더 영상 필터의 비교분석)

  • Kim, Daeseong;Jung, Hyung-Sup;Baek, Wonkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • Due to the characteristics of microwave signals, Radar satellite image has been used for flood detection without weather and time influence. The more methods of flood detection were developed, the more detection rate of flood area has been increased. Since flood causes a lot of damages, flooded area should be distinguished from non flooded area. Also, the detection of flood area should be accurate. Therefore, not only image resolution but also the filtering process is critical to minimize resolution degradation. Although a resolution of radar images become better as technology develops, there were a limited focused on a highly suitable filtering methods for flood detection. Thus, the purpose of this study is to find out the most appropriate filtering method for flood detection by comparing three filtering methods: Lee filter, Frost filter and NL-means filter. Therefore, to compare the filters to detect floods, each filters are applied to the radar image. Comparison was drawn among filtered images. Then, the flood map, results of filtered images are compared in that order. As a result, Frost and NL-means filter are more effective in removing the speckle noise compared to Lee filter. In case of Frost filter, resolution degradation occurred severly during removal of the noise. In case of NL-means filter, shadow effect which could be one of the main reasons that causes false detection were not eliminated comparing to other filters. Nevertheless, result of NL-means filter shows the best detection rate because the number of shadow pixels is relatively low in entire image. Kappa coefficient is scored 0.81 for NL-means filtered image and 0.55, 0.64 and 0.74 follows for non filtered image, Lee filtered image and Frost filtered image respectively. Also, in the process of NL-means filter, speckle noise could be removed without resolution degradation. Accordingly, flooded area could be distinguished effectively from other area in NL-means filtered image.

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Water body extraction using block-based image partitioning and extension of water body boundaries (블록 기반의 영상 분할과 수계 경계의 확장을 이용한 수계 검출)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.471-482
    • /
    • 2016
  • This paper presents an extraction method for water body which uses block-based image partitioning and extension of water body boundaries to improve the performance of supervised classification for water body extraction. The Mahalanobis distance image is created by computing the spectral information of Normalized Difference Water Index (NDWI) and Near Infrared (NIR) band images over a training site within the water body in order to extract an initial water body area. To reduce the effect of noise contained in the Mahalanobis distance image, we apply mean curvature diffusion to the image, which controls diffusion coefficients based on connectivity strength between adjacent pixels and then extract the initial water body area. After partitioning the extracted water body image into the non-overlapping blocks of same size, we update the water body area using the information of water body belonging to water body boundaries. The update is performed repeatedly under the condition that the statistical distance between water body area belonging to water body boundaries and the training site is not greater than a threshold value. The accuracy assessment of the proposed algorithm was tested using KOMPSAT-2 images for the various block sizes between $11{\times}11$ and $19{\times}19$. The overall accuracy and Kappa coefficient of the algorithm varied from 99.47% to 99.53% and from 95.07% to 95.80%, respectively.

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.