Journal of the Korean Society for Industrial and Applied Mathematics
/
v.25
no.3
/
pp.107-116
/
2021
We introduce optimization algorithms using Bregman Divergence for solving non-negative matrix factorization (NMF) problems. Bregman divergence is known a generalization of some divergences such as Frobenius norm and KL divergence and etc. Some algorithms can be applicable to not only NMF with Frobenius norm but also NMF with more general Bregman divergence. Matrix Factorization is a popular non-convex optimization problem, for which alternating minimization schemes are mostly used. We develop the Bregman proximal gradient method applicable for all NMF formulated in any Bregman divergences. In the derivation of NMF algorithm for Bregman divergence, we need to use majorization/minimization(MM) for a proper auxiliary function. We present algorithmic aspects of NMF for Bregman divergence by using MM of auxiliary function.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.7
/
pp.1307-1311
/
2006
In this paper, we propose new speech feature parameter using the Matrix Factorization for appearance part-based features of speech spectrum. The proposed parameter represents effective dimensional reduced data from multi-dimensional feature data through matrix factorization procedure under all of the matrix elements are the non-negative constraint. Reduced feature data presents p art-based features of input data. We verify about usefulness of NMF(Non-Negative Matrix Factorization) algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment results, we confirm that proposed feature parameter is superior to MFCC(Mel-Frequency Cepstral Coefficient) in recognition performance that is used generally.
Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
Journal of information and communication convergence engineering
/
v.1
no.4
/
pp.209-212
/
2003
In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.
In this paper, we propose new speech feature parameter using NMf(Non-Negative Matrix Factorization). NMF can represent multi-dimensional data based on effective dimensional reduction through matrix factorization under the non-negativity constraint, and reduced data present parts-based features of input data. In this paper, we verify about usefulness of NMF algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment result, we could confirm that proposal feature parameter is superior in recognition performance than MFCC(mel frequency cepstral coefficient) that is used generally.
Proceedings of the Korea Contents Association Conference
/
2008.05a
/
pp.92-95
/
2008
NMF(Non-negative Matrix Factorization) has been proposed as an useful algorithm for feature extraction. Using NMF, we can extract low-dimensional feature vectors. Also, we can find clustering effects in the NMF algorithm. Also, it is reported that the sparse NMF algorithm shows better clustering effects. This paper compares the two approaches in the viewpoint of clustering effects.
In this paper, we develop a multichannel blind source separation algorithm based on a beamspace transform and the multichannel non-negative matrix factorization (NMF) method. The NMF algorithm is a famous algorithm which is used to solve the source separation problems. In this paper, we consider a beamspace-time-frequency domain data model for multichannel NMF method, and enhance the conventional method using a beamspace transform. Our decomposition algorithm is applied to audio source separation, using a dataset from the international Signal Separation Evaluation Campaign 2010 (SiSEC 2010) for evaluation.
Music transcription is extracting pitch (the height of a musical note) and rhythm (the length of a musical note) information from audio file and making a music score. In this paper, we decomposed a waveform into frequency and rhythm components using Non-Negative Matrix Factorization (NMF) and Non-Negative Sparse coding (NNSC) which are often used for source separation and data clustering. And using the subharmonic summation method, fundamental frequency is calculated from the decomposed frequency components. Therefore, the accurate pitch of each score can be estimated. The proposed method successfully performed music transcription with its results superior to those of the conventional methods which used either NMF or NNSC.
Proceedings of the Korean Society for Bioinformatics Conference
/
2004.11a
/
pp.117-123
/
2004
마이크로어레이 (microarray) 기술이 개발된 후로 연관된 유전자 클러스터 (cluster)를 찾는 문제는 깊이 연구되어왔다. 이 문제는 핵심적인 과제 중 하나는 생물학적으로 타당한 클러스터의 수를 결정하는 데 있다. 본 논문은 최적의 클러스터 수를 결정하는 기준을 제시하고, non-negative factorization (NMF)를 이용해 클러스터 centroid의 패턴을 찾는 방법을 제안한다. NMF에 의해 발견된 각각의 패턴은 생물학적 프로세스의 특정 부분으로 해석될 수 있다. NMF는 factor matrix의 entity를 non-negative로 제약 (constraint)하고, 이 제약은 오직 additive combination만 허용하기 때문에 이러한 부분적인 패턴을 찾아낼 수 있다. NMF의 유용성은 이미지 분석과 텍스트 분석에서 이미 입증되어 있다. 본 논문에서 제안한 방법에 의해 위의패턴과 유사한 발현 패턴을 갖는 유전자를 모을 수 있었다. 제안된 방법은 human fibroblast데이터와 yeast cell cycle 데이터에 적용해 성능을 입증하였다.
Proceedings of the Korean Society for Language and Information Conference
/
2007.11a
/
pp.430-439
/
2007
In this paper, we use non-negative matrix factorization (NMF) to refine the document clustering results. NMF is a dimensional reduction method and effective for document clustering, because a term-document matrix is high-dimensional and sparse. The initial matrix of the NMF algorithm is regarded as a clustering result, therefore we can use NMF as a refinement method. First we perform min-max cut (Mcut), which is a powerful spectral clustering method, and then refine the result via NMF. Finally we should obtain an accurate clustering result. However, NMF often fails to improve the given clustering result. To overcome this problem, we use the Mcut object function to stop the iteration of NMF.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.3
/
pp.55-62
/
2017
Non-negative matrix factorization (NMF) is one of the typical parts-based representation in which images are expressed as a linear combination of basis vectors that show the lcoal features or objects in the images. In this paper, we represent face images using various NMF methods and recognize their face identities based on extracted features using a learning vector quantization. We analyzed the various NMF methods by comparing extracted basis vectors. Also we confirmed the availability of NMF to the face recognition by verification of recognition rate of the various NMF methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.