• Title/Summary/Keyword: Non-Negative Matrix Factorization (NMF)

Search Result 87, Processing Time 0.025 seconds

UNDERSTANDING NON-NEGATIVE MATRIX FACTORIZATION IN THE FRAMEWORK OF BREGMAN DIVERGENCE

  • KIM, KYUNGSUP
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.107-116
    • /
    • 2021
  • We introduce optimization algorithms using Bregman Divergence for solving non-negative matrix factorization (NMF) problems. Bregman divergence is known a generalization of some divergences such as Frobenius norm and KL divergence and etc. Some algorithms can be applicable to not only NMF with Frobenius norm but also NMF with more general Bregman divergence. Matrix Factorization is a popular non-convex optimization problem, for which alternating minimization schemes are mostly used. We develop the Bregman proximal gradient method applicable for all NMF formulated in any Bregman divergences. In the derivation of NMF algorithm for Bregman divergence, we need to use majorization/minimization(MM) for a proper auxiliary function. We present algorithmic aspects of NMF for Bregman divergence by using MM of auxiliary function.

Feature Parameter Extraction and Speech Recognition Using Matrix Factorization (Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식)

  • Lee Kwang-Seok;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1307-1311
    • /
    • 2006
  • In this paper, we propose new speech feature parameter using the Matrix Factorization for appearance part-based features of speech spectrum. The proposed parameter represents effective dimensional reduced data from multi-dimensional feature data through matrix factorization procedure under all of the matrix elements are the non-negative constraint. Reduced feature data presents p art-based features of input data. We verify about usefulness of NMF(Non-Negative Matrix Factorization) algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment results, we confirm that proposed feature parameter is superior to MFCC(Mel-Frequency Cepstral Coefficient) in recognition performance that is used generally.

Parts-Based Feature Extraction of Spectrum of Speech Signal Using Non-Negative Matrix Factorization

  • Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.209-212
    • /
    • 2003
  • In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.

Parts-based Feature Extraction of Speech Spectrum Using Non-Negative Matrix Factorization (Non-Negative Matrix Factorization을 이용한 음성 스펙트럼의 부분 특징 추출)

  • 박정원;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.49-52
    • /
    • 2003
  • In this paper, we propose new speech feature parameter using NMf(Non-Negative Matrix Factorization). NMF can represent multi-dimensional data based on effective dimensional reduction through matrix factorization under the non-negativity constraint, and reduced data present parts-based features of input data. In this paper, we verify about usefulness of NMF algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment result, we could confirm that proposal feature parameter is superior in recognition performance than MFCC(mel frequency cepstral coefficient) that is used generally.

  • PDF

Clustering Effects in Sparse NMF(Non-negative Matrix Factorization) (Sparse NMF에 의한 클러스터링)

  • Oh, Sang-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.92-95
    • /
    • 2008
  • NMF(Non-negative Matrix Factorization) has been proposed as an useful algorithm for feature extraction. Using NMF, we can extract low-dimensional feature vectors. Also, we can find clustering effects in the NMF algorithm. Also, it is reported that the sparse NMF algorithm shows better clustering effects. This paper compares the two approaches in the viewpoint of clustering effects.

  • PDF

Audio Source Separation Method Based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part I: Beamspace-domain Multichannel Non-negative Matrix Factorization system (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part I: 빔공간-영역 다채널 비음수 행렬 분해 시스템)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.317-331
    • /
    • 2012
  • In this paper, we develop a multichannel blind source separation algorithm based on a beamspace transform and the multichannel non-negative matrix factorization (NMF) method. The NMF algorithm is a famous algorithm which is used to solve the source separation problems. In this paper, we consider a beamspace-time-frequency domain data model for multichannel NMF method, and enhance the conventional method using a beamspace transform. Our decomposition algorithm is applied to audio source separation, using a dataset from the international Signal Separation Evaluation Campaign 2010 (SiSEC 2010) for evaluation.

Music Transcription Using Non-Negative Matrix Factorization (비음수 행렬 분해 (NMF)를 이용한 악보 전사)

  • Park, Sang-Ha;Lee, Seok-Jin;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.102-110
    • /
    • 2010
  • Music transcription is extracting pitch (the height of a musical note) and rhythm (the length of a musical note) information from audio file and making a music score. In this paper, we decomposed a waveform into frequency and rhythm components using Non-Negative Matrix Factorization (NMF) and Non-Negative Sparse coding (NNSC) which are often used for source separation and data clustering. And using the subharmonic summation method, fundamental frequency is calculated from the decomposed frequency components. Therefore, the accurate pitch of each score can be estimated. The proposed method successfully performed music transcription with its results superior to those of the conventional methods which used either NMF or NNSC.

Clustering gene expression data using Non -Negative matrix factorization (Non-negative matrix factorization 을 이용한 마이크로어레이 데이터의 클러스터링)

  • Lee, Min-Young;Cho, Ji-Hoon;Lee, In-Beum
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.117-123
    • /
    • 2004
  • 마이크로어레이 (microarray) 기술이 개발된 후로 연관된 유전자 클러스터 (cluster)를 찾는 문제는 깊이 연구되어왔다. 이 문제는 핵심적인 과제 중 하나는 생물학적으로 타당한 클러스터의 수를 결정하는 데 있다. 본 논문은 최적의 클러스터 수를 결정하는 기준을 제시하고, non-negative factorization (NMF)를 이용해 클러스터 centroid의 패턴을 찾는 방법을 제안한다. NMF에 의해 발견된 각각의 패턴은 생물학적 프로세스의 특정 부분으로 해석될 수 있다. NMF는 factor matrix의 entity를 non-negative로 제약 (constraint)하고, 이 제약은 오직 additive combination만 허용하기 때문에 이러한 부분적인 패턴을 찾아낼 수 있다. NMF의 유용성은 이미지 분석과 텍스트 분석에서 이미 입증되어 있다. 본 논문에서 제안한 방법에 의해 위의패턴과 유사한 발현 패턴을 갖는 유전자를 모을 수 있었다. 제안된 방법은 human fibroblast데이터와 yeast cell cycle 데이터에 적용해 성능을 입증하였다.

  • PDF

Refinement of Document Clustering by Using NMF

  • Shinnou, Hiroyuki;Sasaki, Minoru
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.430-439
    • /
    • 2007
  • In this paper, we use non-negative matrix factorization (NMF) to refine the document clustering results. NMF is a dimensional reduction method and effective for document clustering, because a term-document matrix is high-dimensional and sparse. The initial matrix of the NMF algorithm is regarded as a clustering result, therefore we can use NMF as a refinement method. First we perform min-max cut (Mcut), which is a powerful spectral clustering method, and then refine the result via NMF. Finally we should obtain an accurate clustering result. However, NMF often fails to improve the given clustering result. To overcome this problem, we use the Mcut object function to stop the iteration of NMF.

  • PDF

Face Recognition using Non-negative Matrix Factorization and Learning Vector Quantization (비음수 행렬 분해와 학습 벡터 양자화를 이용한 얼굴 인식)

  • Jin, Donghan;Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.55-62
    • /
    • 2017
  • Non-negative matrix factorization (NMF) is one of the typical parts-based representation in which images are expressed as a linear combination of basis vectors that show the lcoal features or objects in the images. In this paper, we represent face images using various NMF methods and recognize their face identities based on extracted features using a learning vector quantization. We analyzed the various NMF methods by comparing extracted basis vectors. Also we confirmed the availability of NMF to the face recognition by verification of recognition rate of the various NMF methods.