Diffusion Behavior of n-Alkanes by Molecular Dynamics Simulations
-
- Bulletin of the Korean Chemical Society
- /
- 제23권11호
- /
- pp.1595-1603
- /
- 2002
In this paper we have presented the results of diffusion behavior of model systems for eight liquid n-alkanes (
본 논문에서는 터보 처리 MIMO 시스템에서 시스템의 성능을 향상시키기 위해 기존의 선형 MMSE 검출기를 기반으로 간단한 비선형 MMSE 검출기를 유도하고 가우시안 근사화와 비선형 MMSE 검출기를 갖는 새로운 터보 처리 MIMO 시스템을 제안하였다. 터보 부호를 사용하는 터보 처리 MIMO 시스템에서 기존의 시스템과 제안된 시스템의 프레임 오율 성능을 살펴보면 1 % FER을 기준으로는 송신과 수신안테나 수를 각각 N과 M이라 할 때, M=N=4인 경우 제안된 시스템은 기존의 시스템보다 약 0.5 dB의 성능 향상을 갖고, M=N=8인 경우 제안된 시스템은 기존의 시스템보다 약 0.4 dB의 성능 향상을 갖는다. 또한 평균 외부 반복 횟수를 살펴보면 제안된 시스템이 기존의 시스템보다 낮은 수준을 보여주었다. 제안된 시스템의 비선형 MMSE 검출기가 수신신호의 측정값에 근거하여 부호화된 비트의 연 출력을 결정함으로써 심볼 값을 판정하는데 필요한 영역에서의 불확실한 부분을 줄였기 때문에 성능이 향상될 수 있었다.
적응 방사선 치료(Adaptive Radiation Therapy, ART)를 실행하기 위한 매 치료 마다 획득되는 Megavoltage cone-beam CT (MVCBCT) 영상을 이용한 재 선량 계산 과정은 필수적이다. 본 연구의 목적은 intensity 보정 방법을 적용한 MVCBCT 영상 기반의 선량 계산 결과와 kilo-voltage CT (kV CT) 영상 기반의 선량 계산 결과의 비교 및 MVCBCT 영상 기반의 선량계산 정확성의 향상이다. MVCBCT 영상의 intensity 교정을 위해 kV CT와 MVCBCT을 이용하여 12 종류의 전자밀도 바를 제공하는 Cheese 팬텀 영상을 획득하고, Cheese 팬텀 영상의 동일한 전자밀도 바에서 표현되는 kV CT 영상과 MVCBCT 영상의 intensity 관계를 도출하였다. 이후 kV CT, MVCBCT를 이용한 Rando 팬텀 영상을 획득하여 MVCBCT 영상은 3차원 강체 정합을 수행하였고 본 과정을 통해 MVCBCT 영상은 kV CT 영상과 마치 동일한 모달리티에서 획득한 영상과 같은 위치 및 intensity 분포로 변환되었고, MVCBCT 영상의 잡음을 없애기 위한 Gaussian smoothing 필터를 적용하였다. 위의 과정을 거친 MVCBCT 영상을 토대로 intensity 교정을 적용한 영상과, intensity 교정을 적용하지 않은 영상, kV CT영상을 기반으로 방사선 치료 계획 시스템을 이용한 선량 계산을 시행 하였다. 선량 계산의 결과는 선량 분포의 차이 및 Percentage difference로 평가되었다. Intensity 보정을 적용한 MVCBCT 영상의 선량 계산 결과의 경우 kV CT 영상 기반의 선량 계산 결과와의 Percentage difference가 두경부 영상의 경우 1.08%, 흉부 영상의 경우 2.44%였다. 본 연구에서 적용한 intensity 변환을 통해 MVCBCT 영상을 이용한 선량 계산의 정확성이 향상됨을 확인하였고, 본 연구 방법은 실제 선량 계산에 적용 및 사용의 편리성을 확인하였다. 차후 연구 계획도 본 연구 내용에 의해 제안되었다.
Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.
하천수 플룸(plume)의 퍼짐을 다루는 역학은 플룸의 경계면이 시간과 공간에 따라서 변하기 때문에 자유경계조건의 문제(free boundary problem)로 다루어야 하는 대단히 복잡한 비선형 문제이다. 더욱이 플룸경계를 통한 주변수의 혼합까지 고려할 경우 그 복잡성은 한층 더해진다. 이러한 비선형성과 복잡성을 피하는 기법의 하나가 적분해석법인 바, 본 논문에서는 하천수 플룸의 흐름축에 수직한 횡방향 및 수심방향에 대하여 기본방정식들을 적분함으로 3차원 문제를 1차원 문제로 치환하는 적분해석법을 사용하였다. 다만 이 일이 가능하기 위해서는 유동변수들(유속, 밀도 등)의 횡방향 및 수심방향의 분포함수가 알려져 있음이 전제되어야 하는데 유속의 축방향성분 및 플룸과 주변수 간의 밀도차가 상기 두 방향에 대해서 가우스(Gauss)분포를 갖는다는 잘 검증된 가정을 활용하였다. 그리고 이 가정에서 플룸의 횡방향 유속을 도출해낸 본 연구자들의 기발표된 논문의 결과도 활용하였다. 결과로 얻어진 연행(entrainment)효과까지 포함한 방정식들을 Runge-Kutta 수치해석법을 사용하여 풀었다. 그리하여 하천수 풀룸의 3차원적 해석을 쉽게 수행할 수 있는 수치해석기법을 얻어냈다.
For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70