• Title/Summary/Keyword: Non-Gaussian Noise

Search Result 143, Processing Time 0.024 seconds

Approximate Probability Density for the Controlled Responses of Randomly Excited Saturated Oscillator (불규칙 가진을 받는 포화 진동계의 응답제어에 관한 확률밀도 추정)

  • 박지훈;김홍진;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.301-309
    • /
    • 2003
  • The non linear control algorithm with actuator saturation for a randomly excited oscillator has been widely explored and has shown promising results, but the probabilistic analysis of the algorithm has been rarely made due to its non-linear nature and the fact that the analytical solution of probability density function (PDF) for controlled responses does not exist. In this paper, a method for the probabilistic analysis on the non linear control algorithm with actuator saturation is proposed based on the equivalent non linear system method. Numerical examples are given to verify the approximation solution of PDF comparing to a statistically obtained PDF using a Gaussian white noise and a Kanai - Tagimi filtered Gaussian white noise.

Suboptimal Decision Fusion in Wireless Sensor Networks under Non-Gaussian Noise Channels (비가우시안 잡음 채널을 갖는 무선 센서 네트워크의 준 최적화 결정 융합에 관한 연구)

  • Park, Jin-Tae;Koo, In-Soo;Kim, Ki-Seon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Decision fusion in wireless sensor networks under non-Gaussian noise channels is studied. To consider the tail behavior noise distributions, we use a exponentially-tailed distribution as a wide class of noise distributions. Based on a canonical parallel fusion model with fading and noise channels, the likelihood ratio(LR) based fusion rule is considered as an optimal fusion rule under Neyman-Pearson criterion. With both high and low signal-to-noise ratio (SNR) approximation to the optimal rule, we obtain several suboptimal fusion rules. and we propose a simple fusion rule that provides robust detection performance with a minimum prior information, Performance evaluation for several fusion rules is peformed through simulation. Simulation results show the robustness of the Proposed simple fusion rule.

  • PDF

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.

DS-PAM UWB System Using Non-linear Chirp Waveform

  • Shen, Hanbing;Zhang, Weihua;An, Xizhi;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.322-328
    • /
    • 2007
  • We propose a direct-sequence pulse-amplitude modulation (DS-PAM) ultra-wideband (UWB) system which employs a non-linear chirp waveform instead of the conventional Gaussian monocycle in this paper. In the approved frequency for UWB, there exist myriad narrowband interferers. Specifically, we focus on the mutual interference between UWB systems and 802.11a WLAN. This paper offers a method to suppress this in-band narrowband interference by introducing a kind of non-linear chirp waveform. Using the proposed non-linear chirp waveform, the effects of one or more narrowband interference sources with different frequencies can be suppressed. System performance of UWB systems in the narrowband interference environment can be improved. Computer simulations with additive white Gaussian noise successfully demonstrate an increase in performance with the proposed system as compared to traditional linear chirp systems.

  • PDF

Adaptive Digital Watermarking using Stochastic Image Modeling Based on Wavelet Transform Domain (웨이브릿 변환 영역에서 스토케스틱 영상 모델을 이용한 적응 디지털 워터마킹)

  • 김현천;권기룡;김종진
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.508-517
    • /
    • 2003
  • This paper presents perceptual model with a stochastic multiresolution characteristic that can be applied with watermark embedding in the biorthogonal wavelet domain. The perceptual model with adaptive watermarking algorithm embeds at the texture and edge region for more strongly embedded watermark by the SSQ. The watermark embedding is based on the computation of a NVF that has local image properties. This method uses non- stationary Gaussian and stationary Generalized Gaussian models because watermark has noise properties. The particularities of embedding in the stationary GG model use shape parameter and variance of each subband regions in multiresolution. To estimate the shape parameter, we use a moment matching method. Non-stationary Gaussian model uses the local mean and variance of each subband. The experiment results of simulation were found to be excellent invisibility and robustness. Experiments of such distortion are executed by Stirmark 3.1 benchmark test.

  • PDF

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙 진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistics of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to genrage a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinanary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

The System of Non-Linear Detector over Wireless Communication (무선통신에서의 Non-Linear Detector System 설계)

  • 공형윤
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.106-109
    • /
    • 1998
  • Wireless communication systems, in particular, must operate in a crowded electro-magnetic environmnet where in-band undesired signals are treated as noise by the receiver. These interfering signals are often random but not Gaussian Due to nongaussian noise, the distribution of the observables cannot be specified by a finite set of parameters; instead r-dimensioal sample space (pure noise samples) is equiprobably partitioned into a finite number of disjointed regions using quantiles and a vector quantizer based on training samples. If we assume that the detected symbols are correct, then we can observe the pure noise samples during the training and transmitting mode. The algorithm proposed is based on a piecewise approximation to a regression function based on quantities and conditional partition moments which are estimated by a RMSA (Robbins-Monro Stochastic Approximation) algorithm. In this paper, we develop a diversity combiner with modified detector, called Non-Linear Detector, and the receiver has a differential phase detector in each diversity branch and at the combiner each detector output is proportional to the second power of the envelope of branches. Monte-Carlo simulations were used as means of generating the system performance.

  • PDF

Hybrid Filter Design for a Nonlinear System with Glint Noise (글린트잡음을 갖는 비선형 시스템에 대한 하이브리드 필터 설계)

  • Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Ji-Bae;Shin, Jong-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.26-29
    • /
    • 2001
  • In a target tracking problem the radar glint noise has non-Gaussian heavy-tailed distribution and will seriously affect the target tracking performance. In most nonlinear situations an Extended Robust Kalman Filter(ERKF) can yield acceptable performance as long as the noises are white Gaussian. However, an Extended Robust $H_{\infty}$ Filter (ERHF) can yield acceptable performance when the noises are Laplacian. In this paper, we use the Interacting Multiple Model(IMM) estimator for the problem of target tracking with glint noise. In the IMM method, two filters(ERKF and ERHF) are used in parallel to estimate the state. Computer simulations of a real target tracking shows that hybrid filter used the IMM algorithm has superior performance than a single type filter.

  • PDF

A Study on Object Counting by Mixture of Gaussian and Motion Vector (가우시안 혼합 모델과 모션 벡터를 이용한 객체 계수 방법 연구)

  • Kim, Gyu-Jin;An, Tae-Ki;Shin, Jeong-Ryeol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1161-1166
    • /
    • 2011
  • A camera is mounted vertically downwards viewing the people heads from the top. This configuration is successful in people counting technique especially when only a few isolated people pass through a counting region in a non-crowded situation. Thus, this paper describes object counting which detects and count moving people using mixture of gaussian and motion vector. This method is intended to estimates the number of people in outdoor environment. This method use single gaussian background modeling which is more robust an noise and has adaptiveness. The experimental results that is based on mixture of gaussian and motion vector is also helpful to design intelligent surveillance.

  • PDF

Development of Time Varying Kalman Smoother for Extracting Fetal ECG using Independent Component Analysis : Preliminary Study (독립요소분석을 이용한 태아심전도 추출을 위한 시변 칼만 평활기의 개발 : 예비연구)

  • Lee, Chung Keun;Kim, Bong Soo;Kwon, Ja Young;Choi, Young Deuk;Song, Kwang Soup;Nam, Ki Chang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.202-208
    • /
    • 2012
  • Fetal heart rate monitoring is important information to assess fetal well-being. Non-invasive fetal ECG (electrocardiography) can be derived from maternal abdominal signal. And various promising signal processing methods have been introduced to extract fetal ECG from mother's composite abdominal signal. However, non-invasive fetal ECG monitoring still has not been widely used in clinical practice due to insufficient reliable measurement and difficulty of signal processing. In application of signal processing method to extract fetal ECG, it might be lower signal to noise ratio due to time varying white Gaussian noise. In this paper, time varying Kalman smoother is proposed to remove white noise in fetal ECG and its feasibility is confirmed. Wiener process was set as Kalman system model and covariance matrix was modified according to white Gaussian noise level. Modified error covariance matrix changed Kalman gain and degree of smoothness. Optimal covariance matrix according to various amplitude in Gaussian white noise was extracted by 5 channel fetal ECG model, and feasibility of proposed method could be confirmed.