• Title/Summary/Keyword: Non-Dimensional Principal Stress

Search Result 8, Processing Time 0.026 seconds

고속 연접봉의 응력 변동

  • 김재호;신영재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.404-412
    • /
    • 1991
  • In the design of high speed machinery, designers must consider the problem of possible structural failure due to excessive dynamically varying stresses, which are induced by the varying external loads and internal inertia forces, in the links of the mechanism. A study of the dynamically induced stresses would indicate what values of the minimum permissible fatigue strength should be for safe mechanism operation. This paper investigates the nature of the stress fluctuation in high speed mechanism on the basis of the effects of both the loads and the friction. The latter is apt to be neglected in the usual analysis in spite of the fact that it is always generated in the operating machinery. The analysis is performed on the coupler of the slider-crank mechanism for illustrative purposes and the results are expressed in a non-dimensional form for design applications.

THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION (부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구)

  • Lee, Seon-A;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

Hydraulic fracturing experiments of highly deviated well with oriented perforation technique

  • Zhu, Hai Y.;Deng, Jin G.;Liu, Shu J.;Wen, Min;Peng, Cheng Y.;Li, Ji R.;Chen, Zi J.;Hu, Lian B.;Lin, Hai;Guang, Dong
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.153-172
    • /
    • 2014
  • In order to investigate the effect of different perforation angles (the angle between the perforation direction and the maximum horizontal principal stress) on the fracture initiation and propagation during hydraulic fracturing of highly deviated well in oil & gas saturated formation, laboratory experiments of the hydraulic fracturing had been carried out on the basis of non-dimensional similar criteria by using 400^3 $mm^3$ cement cubes. A plane fracture can be produced when the perforations are placed in the direction of the maximum horizontal principal stress. When the perforation angle is $45^{\circ}$, the fractures firstly initiate from the perforations at the upper side of the wellbore, and then turn to the maximum horizontal principal stress direction. When the well deviation angle and perforation angle are both between $45^{\circ}$ and $90^{\circ}$, the fractures hardly initiate from the perforations at the lower side of the wellbore. Well azimuth (the angle between the wellbore axis and the maximum horizontal principal stress) has a little influence on the fracture geometries; however it mainly increases the fracture roughness, fracture continuity and the number of secondary fractures, and also increases the fracture initiation and propagation pressure. Oriented perforating technology should be applied in highly deviated well to obtain a single plane fracture. If the well deviation angle is smaller, the fractures may link up.

Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging (다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증)

  • Hwang, Won-Seok;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

A Concrete Model for Analysis of Concrete Structure with Confinement (구속응력을 받는 콘크리트 구조물 해석을 위한 콘크리트 구성모델)

  • Kwon, Min-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.433-442
    • /
    • 2003
  • This paper presents a hypoplastic model for three-dimensional analysis of concrete structures under monotonic, cyclic, proportional and non-proportional loading. The constitutive model is based on the concept of equivalent uniaxial strains that allows the assumed orthotropic model to be described via three equivalent uniaxial stress-strain curves. The characteristics of these curves are obtained from the ultimate strength surface in the principal stress space based on the Willam-Warnke curve. A cap model is added to consider loading along or near the hydrostatic axis. The equivalent uniaxial curve is based on the Popovics and Saenz models. The post-peak behavior is adjusted to account for the effects of confinement and to describe the change in response from brittle to ductile as the lateral confinement increases. Correlation studies with available experimental tests are presented to demonstrate the model performance. Tests with monotonic loading on specimens under constant lateral confinement are considered first, followed by biaxial and triaxial tests with cyclic loads. The triaxial test example considers non-proportional loading.

The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration: A three-dimensional finite element study (탄성계수가 다른 복합레진의 혼합수복이 5급 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.184-197
    • /
    • 2008
  • This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.

  • PDF

The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration: A three-dimensional finite element study (탄성계수가 다른 복합레진의 혼합수복이 5급 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.184-197
    • /
    • 2008
  • This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.