• Title/Summary/Keyword: Non-Destructive test

Search Result 474, Processing Time 0.026 seconds

A Development on the Non-Destructive Testing Equipment for the Compaction Control and the Evaluation of Pavements Properties (지반물성추정 및 다짐관리를 위한 비파괴시험장비의 개발)

  • 최준성;김인수;유지형;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.385-390
    • /
    • 2000
  • In this study, the Non-Destructive Testing Equipment was introduced for the compaction control and the evaluation of pavements properties and the developing process was showed. Falling Weight Deflectometer(FWD) is a system for performing non-destructive testing of pavement and the other foundation structures. The system develops forces from the acceleration caused by the arrest of a falling weight and these forces are transmitted onto the surface of a structure causing it to deflect much as it would due to the weight of a passing wheel load. The structure will bend downward and exhibit a deflection basin. FWD uses a set of velocity sensors to determine the amplitude and shape of the deflection basin. The deflection response, when related to the applied loading, can provide information about the strength and condition of the various elements of the test structure. In this study, a computer program was developed that can be used to evaluate pavement and foundation structures from the data produced by FWD. The Falling Weight Deflectometer, non-destructive testing equipment, is increasing used at the whole world.

  • PDF

Wood decay Detection by Non-destructive Methods (비파괴 방법을 이용한 목재의 부후 탐지)

  • Son, Dong-Won;Lee, Dong-Heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.74-81
    • /
    • 2004
  • The ultrasonic non-destructive method was used for wood decay test. The temperature change and moisture contents of wood were estimated how the ultrasonic wave velocity changes. The relationship between weight loss of wood decayed by T. palustris and ultrasonic wave velocity was investigated. The non-destructive methods of different condition of logwood were estimated. Decay map of old wood was made by non destructive methods. Through these tests, we can accumulate the data to judge the degree of wood decay. The decay map of wood could be used for the analysis of old wood.

A Study on the Application of Non-destructive Test for Concrete Bridges in Korea (국내 콘크리트 교량에 적합한 비파괴 시험법 적용에 관한 연구)

  • 이학은;윤영수;이병철;김영민;정우용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.737-742
    • /
    • 1998
  • Non-destructive field tests of the concrete has achieved increasing acceptance for the evaluation of existing concrete structures. But the application of this test has not still accomplished to guarantee perfectly the durability of the concrete bridges in Korea. As two major testing methods, this paper recommends the proper empirical relationship between the rebound number together with the ultrasonic pulse velocity and the core strength. Also, this paper recommend the relationships as the aging and as the element.

  • PDF

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

Calculation of Aging Effects of Ultrasonic Pulse Velocity in Concrete by Non-Destructive Test (비파괴시험에 의한 콘크리트 초음파속도의 재령계수 산정)

  • Cho, Chang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.173-179
    • /
    • 2008
  • This paper aims to calculate age coefficient of ultrasonic pulse velocity by non-destructive test. When concrete compressive strength is measured by non-destructive test, rebound test hammer method is applied to estimate age coefficient depending on the course of time after concrete casting, but ultrasonic pulse velocity method is not applied in the process. Although it is necessary to consider age coefficient with change of ultrasonic pulse velocity of concrete depending on aging, there have been little attempts to apply that method. The experiments were conducted to calculate aging effects which will be applied to establish the formula of measuring concrete strength. As a result of experiments, it was found that ultrasonic pulse velocity showed radical changes depending on concrete hardening in comparison with initial standard values. So, it was concluded that age coefficient must be applied to calculate strength. In conclusion, age coefficient of ultrasonic pulse velocity of concrete was suggested on the basis of experimental results.

Latest Technology of Non Destructive Inspection for Welded Structure (용접구조물의 최신 비파괴 검사기술)

  • Kim, Youngsik;Kil, Sangcheol
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • As the Non Destructive Test (NDT) for the welded structure, PT(Penetration Test). MT(Magnetic Test), RT (Radioisotope Test) and UT(Ultrasonic Test) methods are widely used in practice. These NDT methods have been developed toward high efficiency, low cost, real time, and high precise new NDT. For example, RT methods are developed to CT(Computed Tomography)and DR(Digital Radiography), and UT metheds are developed into Phased array, Guide wave, TOFD method. Moreover, the Infrared thermography and Laser ultrasonic technique are newly developed for applying in high temperature objects as the non-contact NDT methods. In this review paper the new high efficiency NDT methods for the welded structure are introduced and the trend of NDT rules applying in welded structure are described.

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.

Methodology of Non-Destructive Examinations on Hydraulic Expansion Region of Steam Generator Tubes (증기발생기 세관 수압확관부 비파괴검사 방법론)

  • Kim, Chang-Soo;Jung, Nam-Du;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.29-33
    • /
    • 2008
  • As the measures of nuclear power plant utilities and manufacturers to reduce the defects of tube expansion region during manufacturing steam generators, many types of NDEs(Non-Destructive Examinations) are conducted to inspect the expansion region. The expansion region of tube is subject to degrade because of stress concentration induced by tube expansion, sludge pile and high temperature. So the inspections for tube expansion region have been reinforced. Liquid penetrant test, helium leak test, Bobbin profile test and hydraulic test are performed to confirm the integrity of tube expanded by hydraulic expansion method. Liquid penetrant test and helium leak test are used to inspect seal weld region on tubesheet end part. Bobbin Profile test is used to inspect fully the expanded region of steam generator tube. Hydraulic test finally verifies the integrity of seal weld region on tubesheet end part.

  • PDF

A Study on The Compressive Strength Correlation by Various Nondestructive Test Method (각종 비파괴 검사법에 의한 압축강도 상관연구)

  • 최원호;신도철;이대우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.767-772
    • /
    • 1998
  • schumidt hammer and ultra-sonic method are commonly used for concrete compressive strength test in a construction field. At present, various kinds of equations for estimation of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between estimation strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for this construction site. In this study, a strength test was carried out destructive test by means of core sampling. Non destructive test was conducted Schumidt hammer and ultra-sonic method, the experimental parameter were concrete age, test method and strength level. It is demonstrated that the correlation behavior of concrete strength in this study good due to the performs analysis of correlation between core strength and nondestructive strength.

  • PDF

Evaluation of Stress-Strain Characteristics of Weldment in Natural Gas Pipeline Using Advanced Indentation System (Advanced Indentation System을 이용한 천연가스배관 용접열영향부의 응력-변형률 변화 특성 분석)

  • Jang, Jae-Il;Son, Dong-Il;Kwon, Dong-Il;Kim, Woo-Sik;Park, Joo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.483-488
    • /
    • 2001
  • Until now, the tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards such as ASTM (American Society for Testing and Materials) standard and BS (British Standard). For some cases including on-service facility materials, however, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using AIS (advanced indentation system) and its application fields are reviewed and discussed.

  • PDF