• Title/Summary/Keyword: Non-Contact Inspection

Search Result 114, Processing Time 0.029 seconds

Surface flatness and distortion inspection of precast concrete elements using laser scanning technology

  • Wang, Qian;Kim, Min-Koo;Sohn, Hoon;Cheng, Jack C.P.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.601-623
    • /
    • 2016
  • Precast concrete elements are widely used in the construction of buildings and civil infrastructures as they provide higher construction quality and requires less construction time. However, any abnormalities in precast concrete surfaces such as non-flatness or distortion, can influence the erection of the elements as well as the functional performance of the connections between elements. Thus, it is important to undertake surface flatness and distortion inspection (SFDI) on precast concrete elements before their delivery to the construction sites. The traditional methods of SFDI which are conducted manually or by contact-type devices are, however, time-consuming, labor-intensive and error-prone. To tackle these problems, this study proposes techniques for SFDI of precast concrete elements using laser scanning technology. The proposed techniques estimate the $F_F$ number to evaluate the surface flatness, and estimate three different measurements, warping, bowing, and differential elevation between adjacent elements, to evaluate the surface distortion. The proposed techniques were validated by experiments on four small scale test specimens manufactured by a 3D printer. The measured surface flatness and distortion from the laser scanned data were compared to the actual ones, which were obtained from the designed surface geometries of the specimens. The validation experiments show that the proposed techniques can evaluate the surface flatness and distortion effectively and accurately. Furthermore, scanning experiments on two actual precast concrete bridge deck panels were conducted and the proposed techniques were successfully applied to the scanned data of the panels.

A Study on the Joint Property by the Surface Treatment Method on the Jointing Method of PET Film using the High Hardness Liquid (고경질 도막을 이용한 PET 필름 접합공법의 필름 표면처리 방법에 따른 접합특성 연구)

  • Lee, Jong-Suk;Kim, Young-Sam;Shin, Hong-Chol;Kim, Young-Geun;Kang, Chung-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.153-159
    • /
    • 2014
  • This research reviewed the joint and duration characteristics depending on the surface treatment condition and lap spliced length in the PET film jointing method using the high hardness liquid material. As a result, the corona discharge treatment was improved to the contact angle, joint tensile strength, and joint peel resistance compared to non-treatment. Particularly, a surface treatment E (Corona discharge + Primer + PU bond + Polyester fabric) turned out to the best, and especially when the lap spliced length is longer than 15mm, stable joint performance was secured under the long term deterioration treatment of 16 weeks. Thus, the joint is considered to be applicable as the water-proof material.

A Study on the Non-Contact Detection Technique of Defects Using AC Current - The Influence of Frequency and lift-off - (교류전류를 이용한 비접촉결함탐상법에 관한 연구 - 주파수 lift-off의 영향 -)

  • Kim, Hoon;Na, Eu-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • New nondestructive inspection (NDI) technique to detect the defect in metal was developed in which an electromagnetic field is induced in a metal by AC current flowing in the magnetic coil and the leak magnetic-flux disturbed by defects is measured using a tape-recorder head with air gap. This technique can be applied in evaluating the location and sizing of surface defects in components of the ferromagnetic body by means of the non-contacting measurement. In this paper, we have applied this technique to the evaluation of two-dimensional surface cracks in ferromagnetic metal, and also investigated the influence of the various frequencies and lift-off. Defects were detected with maximum values in the distribution of voltage and it was found that the maximum values tend to increase with the defect depth. Although the maximum values for defects are affected by the frequency and lift-off, the depth of small defects can be estimated from the linear relationship between the depth and voltage rate$(V_0/V_{ave})$.

Development of models for measuring track irregularities using accelerometers (가속도계를 이용한 궤도틀림 측정용 모델의 개발)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.303-310
    • /
    • 2011
  • This paper is focused on development of models for measuring lateral and vertical track irregularities from corresponding accelerometers of an in-service high-speed train. Generally, the track irregularity was measured by a special railway inspection vehicle or system with contact or non-contact sensors. However, the sensors are very expensive and vulnerable to a harsh environment. Displacement estimation from an inertial measurement unit and its wave-band filtering was already developed in the previous study, and it was found that their results included not only the track irregularities but also other information such as phase delay of the applied filters, and suspension and conicity of the wheel. To identify the track irregularities from those results, a compensation filtering method was proposed. Each directional compensation filter was derived by using a system identification method with the estimated directional displacement as input and the corresponding track irregularities as output. In this paper, they are integrated into a model for each direction and applied to the measured lateral and vertical acceleration data from the axle-box and bogie of an in-service high-speed train. Their results are compared with the data from the track geometry measurement system. From the comparison, the proposed models are a useful tool for the measurement of the track irregularities using accelerometers of in-service high-speed trains.

  • PDF

Using Air-coupled Sensors (ASC) for Non-contact Non-destructive Evaluation of Concrete in Structures (Air-coupled 센서를 이용한 비접촉 콘크리트 비파괴 검사법)

  • Kee, Seong Hoon
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.17 no.1
    • /
    • pp.48-59
    • /
    • 2013
  • 응력파의 기반한 비파괴 검사법은 비교적 실험 절차 및 실험에 필요한 장비가 단순하고, 인체에 해가 없으며, 비용이 저렴한 특성을 갖고있다. 따라서 건축/토목 구조물의 비파괴 검사에 매우 효과적인 방법으로 알려져 있다. 하지만 기존의 가속도계, 변위계, 지오폰과 같은 부착 센서를 사용할 경우 표면 처리, 센서의 부착 및 이동에 따른 추가적인 시간이 소요되고, 센서와 구조물의 불완전한 커플링으로 인한 측정 결과의 신뢰성 및 일관성을 유지하지 어렵다는 문제를 발생시킨다. 최근 이러한 문제의 해결책으로 Air-coupled sensor (ACS)의 사용이 각광받고 있으며, 여러 연구자들에 의해 ACS의 가능성 및 실용성이 증명되고 있다. 기존의 접촉센서와 비교하여 ACS를 사용했을 때 얻을 수 있는 가장 큰 장점은 센서의 커플링 문제를 근본적으로 해결하여 신뢰도가 높고 일관적인 측정이 가능하고, 대형 건축/토목 구조물의 표면을 음향스캔하여 결과를 신속하게 처리하여 실시간으로 시각화 할 수 있다는 점이다. 이론적으로 ACS를 이용하여 측정하는 물리값은 콘크리트 내부에서 발생된 응력파의 일부가 공기중으로 전파된 누설파 (Leaky wave)이다. 콘크리트 비파괴 검사에 주로 사용하는 100 kHz이하의 저주파를 측정할 경우 일반적으로 콘텐서마이크가 ACS로 사용될 수 있다. 기존 연구자들은 실험 및 이론적 연구를 통하여 응력파에 기반한 비파괴 방법에서 ACS가 기존의 접촉 센서를 대체할 수 있다는 점을 보여주고 있다. 현재 미국에서는 연방 도로청 (FHWA) 및 국가표준기술연구소 (NIST)의 연구비 지원으로 ACS의 실용성을 높이기 위하여 최적화된 음향반사판의 설계를 통한 ACS 의 민감도를 높이기 위한 연구, 다채널 센서 배열 및 데이터 통합을 위한 새로운 알로리즘 개발, 자동화 및 로봇 기술과 융합과 같은 연구가 활발히 진행되고 있다. 멀지 않은 미래에는 ACS를 장착한 무인 로봇이 다양한 종류의 건축/토목 구조물의 건전도를 평가하기 위하여 종횡무진 활약하는 모습을 현실 속에서 볼 수 있을 것이라 기대한다.

  • PDF

Thermographic Defects Evaluation of Railway Composite Bogie (적외선열화상을 이용한 복합소재대차의 결함평가)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.548-553
    • /
    • 2011
  • The lock-in thermography was employed to evaluate the defects in railway bogies. Prior to the actual application on railway bogies, in order to assess the detectability of known flaws, the calibration reference panel was prepared with various dimensions of artificial flaws. The panel was composed of polymer matrix composites, which were the same material with actual bogies. Through lock-in thermography evaluation, the optimal frequency of heat source was determined for the best flaw detection. Based on the defects information, the actual defect assessments on railway bogie were conducted with different types of railway bogies, which were used for the current operation. In summary, it was found that the novel infrared thermography technique could be an effective way for the inspection and the detection of surface defects on bogies since the infrared thermography method provided rapid and non-contact investigation of railway bogies.

  • PDF

Precision enhancement for a CCD/LSB type shape measuring system (CCD/LSB 방식의 형상측정시스템의 정밀도 향상 방법)

  • 유주상;정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.137-142
    • /
    • 2001
  • Since recent production system becomes that of the small quantity, large volume with high quality production, accurate and high speed inspection system is required. In such situation, noncontact 3D measurement system which utilized CCD cameras is useful technique in terms of system cost, speed of data acquisition, measuring accuracy and application. However, it has low accuracy compared with contact 3D measurement system because of the camera distortion, non uniformity of laser distribution and so on. For those reasons, in this paper precision enhancement method is studied considering radial camera distortion, and laser distribution. A distortion correction method is applied even to the standard lens. The laser slit beam trajectory is determined by 3 method: based of the Gaussian function signal approximation, the median method, the center of gravity method and the peak point of the Gaussian function method.

  • PDF

A Study On Vibration Characteristics Of Plate with Crack by ESPI Method (ESPI를 이용한 결함이 있는 평판의 진동특성에 관한 연구)

  • 박찬주;김경석;홍진후;장호섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.239-242
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry(ESPI) was proposed in the 1970's as a method of producing the interferogram without using traditional holographic technique. ESPI is more faster than Holography method, because the interferometric image is recorded and updated by the video camera every 1/30 second and whold-field inspection possibly. In this study using a non-contact optical technique that is suited for in-plane and out-of-plane deformation measurement. Thin plate with crack was analyzed by ESPI to determine the characteristics of vibration mode shape and natural frequency. Also, results of the experiment were compared with Finite Element Method(FEM).

  • PDF

A Study on Measurement of Crack Length by using Laser Speckle Interferometry (레이저 스페클 간섭을 이용한 균열 길이 측정에 관한 연구)

  • Kang, Young-June;Bae, Jin-Kil;Ryu, Weon-Jae;Park, Nan-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.34-41
    • /
    • 2001
  • More accurate and fast inspection method for mechanical parts and structure is required to guarantee the safety. Conventional methods using compliance method, eddy current method, ultrasonic wave, acoustic emission for non-destructive testing in mechanical parts and structure have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money, and manpower. In this study, in order to overcome these shortcomings, we used In-plane Electronic Speckle pattern Interferometry(In-plane ESPI) that was full-field measurement and noncontact method. We detected the cracks of the specimen at a real time and measured the length of the crack by using In-place ESPI system. Finally, we compared this results with conventional microscope method.

  • PDF

Hot Spot Analysis on Brake Disc Using Infrared Camera (적외선카메라를 이용한 제동 디스크 열크랙 분석)

  • Kim, Jeong-Guk;Goo, Byeong-Choon;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.964-968
    • /
    • 2008
  • Infrared thermography using high-speed infrared camera has been recognized as a powerful method for various potential applications, such as nondestructive inspection, failure analysis, stress analysis, and medical fields, due to non-contact, high-speed, and high spatial resolution at various temperature ranges. In this investigation, damage evolution due to generation of hot spots on railway brake disc was investigated using the infrared thermography method. A high-speed infrared camera was used to measure the surface temperature of brake disc as well as for in-situ monitoring of hot spot evolution. From the thermographic images, the observed hot spots and thermal damage of railway brake disc during braking operation were qualitatively analyzed. Moreover, in this investigation, the previous experimental and theoretical studies on hot spots phenomenon were reviewed, and the current experimental results were introduced and compared with theoretical prediction.

  • PDF