• Title/Summary/Keyword: Non-Contact Inspection

Search Result 114, Processing Time 0.023 seconds

Modeling of Debonding Detection Using Microstrip Patch Antenna (마이크로스트립 패치 안테나를 이용한 박리 탐사 모델링)

  • Rhim Hong-Chul;Lee Hyo-Seok;Woo Sang-Kyun;Song Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.35-39
    • /
    • 2006
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques. microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymer (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in actual measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with horn antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding. between concrete and FRP. Also, the equipment of ultrasonic method which is commercialized are used at the same condition. Both of the results are analyzed in comparison of each other. Microwave and ultrasonic methods have been used for the detection of debonding between concrete and fiber-reinforced plastic (FRP).

  • PDF

The Study on the Material Evaluation and Development of Nondestructive Inspection System Using Laser Guided Ultrasonics (레이저 유도 초음파를 이용한 재료평가 및 비파괴 검사 시스템 개발에 관한 연구)

  • 김재열;송경석;김창현;김유홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.263-268
    • /
    • 2004
  • In the present study, a Nd;YAG Laser (pulse type) was used to emit ultrasonic signals to a test material. In addition, a total ultrasonic investigation system was designed by adopting a Fabry-Perot interferometer, which receives ultrasonic signals without any contact. For non-destructive test SM45C, which contains some flaws was used as a test material. Because it is easy to align light beam in receiver, and the length of the light beam does not change much even if convex mirror leans towards one side, confocal Fabry-Perot interferometer, which has stable frequency, and PI control are used to correct interfered and unstable signals from temperature, fluctuation and time shift of laser frequency. Stable signals are always obtained by the feedback of PI circuit signals in the confocal Fabry-Perot interferometer. The type, size and position of flaws inside the test material were examined by achieving the stabilization of an interferometer. This study presented a useful method, which could quantitatively investigate the fault of objects by using a Fabry-Perot interferometer.

  • PDF

Development of Caliper System for Geometry PIG (지오메트리 피그용 캘리퍼 시스템 개발)

  • Yoo, H.R.;Kim, D.K.;Cho, S.H.;Park, S.H.;Park, S.S.;Park, D.J.;Koo, S.J.;Rho, Y.W.;Park, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.228-234
    • /
    • 2001
  • NTMS(Non-contact Tilted-angle Measuring System) is developed by using the principle that the magnetic field of an anisotropic magnet's inner space is uniform and it's possible to measure the strength of the magnetic field using a linear hall effect sensor. In order to implement the caliper system of the geometry PIG(Pipeline Inspection Gauge) which has high accuracy and proper output voltage of the hall sensor without additional driving module or a signal amplifier, it is necessary to consider the size of the magnet, the inner space and back-yoke and the position of pin-hole in the magnet. So the optimal design method of the caliper system is proposed through analysis of NTMS's magnetic field adopting a FEM(Finite Element Method). The experimental results show that the developed caliper system can be used for the geometry pig with good performances.

  • PDF

Optical imaging methods for qualification of superconducting wires

  • Kim, Gracia;Jin, Hye-Jin;Jo, William
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.21-25
    • /
    • 2014
  • In order to develop 2nd generation (2G) high-temperature superconducting (HTS) wires as commercial products, it is necessary to perform a high speed investigation of their superconducting performance. Room-temperature and non-contact optical scanning tools are necessary to verify the microstructure of the superconducting materials, the current flow below the critical temperature, and the critical current density. In this paper, we report our results of an inspection of the electrical transport properties of coated conductors. The samples that we used in our study were highly qualified rare-earth based coated conductors produced via co-evaporation, and $SmBa_2Cu_3O_{7-y}$ (SmBCO) was the superconducting materials used in our studies. A film grown on IBAD-MgO templates shows larger than 400 A/cm at 77 K and a self-field. The local transport properties of the films were investigated by room-temperature imaging by thermal heating. The room-temperature images show structural inhomogeneities on the surface of the films. Bolometric response imaging via low-temperature bolometric microscopy was used to construct the local current mapping at the surface. These results indicate that the non-uniform regions on the surface disturb the current flow, and laser scanning images at room-temperature and at a low-temperature suggest a correlation between the structural properties and transport properties. Thus this method can be effective to evaluate the quality of the coated conductors.

Effect of Experimental Muscle Fatigue on Muscle Pain and Occlusal Pattern (실험적으로 유발되는 근피로가 근통증 및 교합양상에 미치는 영향)

  • Kim, Jae-Chang;Lim, Hyun-Dae;Kang, Jin-Kyu;Lee, You-Mee
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.3
    • /
    • pp.279-294
    • /
    • 2008
  • This study aimed to make an analysis of the occlusion in the state of muscle fatigue produced by excessive mouth opening and clenching during the dental treatment to control the dental pain and to evaluate the sensory nerve in the muscle pain state. Most of the reasons why patients visit the dental office result in pain-either conceivably the dental origin pain or the non-dental origin pain. The dental offices have many therapeutic actions to produce the masticatory muscle fatigue for the treatment. Dental treatment with long minutes of mouth opening can cause some headaches, masticatory muscle pain and mouth opening difficulties. Patients with mastication problems who visits a dental office to alleviate pain run against another unexpected pain with other aspects. This study uses T-scan II system(Tekscan Co., USA) for the evaluation on the occlusal pattern in the experimental muscle fatigue after clenching, opening the mouth excessively and chewing gum. The occlusal contact pattern is analyzed by the contact timing, namely first, intercuspal, maximum and end point of contact. This inspection was performed at frequencies of 2000Hz, 250 Hz and 5 Hz before and after each experimental muscle pain was produced to 24 subjects who had normal occlusion without the orthodontic treatment or a wide range of the prosthesis by using $neurometer^{\circledR}$ CPT/C(Neurotron, Inc. Baltimore, Maryland, USA). The measuring sites were mandibular nerve experimental muscle fatigue respectively. This study could obtain the following results after the assessment of occlusion and sensory nerve of the experimental muscle fatigue. 1. There were the fastest expression after the excessive mouth opening in muscle fatigue and after tooth clenching in muscle pain. In the visual analog scale that records the subjective level, there was the highest scale after the clenching in the muscle fatigue in jumping off the point of pain. 2. Tooth contact time, contact force, relative contact force on the point of the first contact had no difference, and there were decreases in the contact force after the excessive mouth opening on intercuspal position point, after the excessive mouth opening and the gum chewing on the point of the maximum, and in the contact time after all the experimental muscle fatigue state on the point of the end contact. 3. There was no statistic significance in the current perception threshold before and after the experimental muscle fatigue. 4. There was no significant difference in the contact number, the maximal contact number on the point of the first contact, and the contact number after the mouth opening and gum chewing on the point of the intercuspal position and the contact number after the experimental muscle fatigue on the maximum point, and showed significant decreases. In conclusion, it was found that the occlusal pattern can cause the changes on the case of the clinical muscle weakness by intra-external oral events. It was important that the sedulous attention to details is required during dental treatment in case of excessive mouth opening, mastication and clenching.

Experiments on the Detection of Delamination in FRP Reinforced Concrete (탄소섬유 보강 콘크리트의 박리 탐사 실험)

  • Rhim, Hong-Chul;Jung, Hang-Chul;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques, microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymers (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in the measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with hom antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding between concrete and FRP. Also, ultrasonic method is used for the same condition. Both results are compared with each other.

Development of LabVIEW Program for Lock-In Infrared Thermography (위상잠금 열화상장치 제어용 랩뷰 프로그램 개발)

  • Min, Tae-Hoon;Na, Hyung-Chul;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • A LabVIEW program has been developed together with simple infrared thermography(IRT) system to control the lock-in conditions of the system efficiently. The IR imaging software was designed to operate both of infrared camera and halogen lamp by synchronizing them with periodic sine signal based on thyristor(SCR) circuits. LabVIEW software was programmed to provide users with screen-menu functions by which it can change the period and energy of heat source, operate the camera to acquire image, and monitor the state of the system on the computer screen. In experiment, lock-in IR image for a specimen with artificial hole defects was obtained by the developed IRT system and compared with optical image.

Test and Finite Element Analysis on Compression after Impact Strength for Laminated Composite Structures of Unidirectional CFRP (일방향 탄소섬유강화 플라스틱 복합재 적층구조의 충격 후 압축강도 시험 및 유한요소해석)

  • Ha, Jae-Seok
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.321-327
    • /
    • 2016
  • In this study, tests and finite element analyses were performed regarding compression after impact strength for laminated composite structures of unidirectional carbon fiber reinforced plastic widely used in structural materials. Two lay-up sequences of composite laminates were selected as test specimens and four impact energy conditions were applied respectively. Impact and compressive strength tests were conducted in accordance with ASTM standards. Impact damages in test specimens were analyzed by using non-destructive inspection method of C-Scan, and compression after impact strengths were calculated with compressive test results. Progressive failure analysis method that can progressively simulate damages and fractures of fiber/matrix/lamina/laminate level was used for impact and compressive strength analyses. All analysis results including contact force, deflection, impact damages, compressive strengths, etc. were compared to test results, and the validity of analysis method was verified.

Evaluation of Internal Defect of Composite Laminates Using A Novel Hybrid Laser Generation/Air-Coupled Detection Ultrasonic System (레이저 발생 초음파와 공기 정합 수신 탐촉자를 이용한 복합재료 적층판의 내부 박리 결함 평가)

  • Lee, Joon-Hyun;Lee, Seung-Joon;Byun, Joon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2008
  • Ultrasonic C-scan technique is one of very popular techniques being used for detection of flaws in polymer matrix composite(PMC). However, the application of this technique is very limited for evaluation of defects in PMC fabricated by the automated fiber placement process. The purpose of this study is to develop a novel ultrasonic hybrid system based on nondestructive and non-contact ultrasonic techniques for evaluation of delamination in carbon/epoxy and carbon/PPS composite laminates. It was shown that the newly developed ultrasonic hybrid system based on dual air-coupled pitch-catch technique with ultrasonic scattering reflection concept could provide excellent image with higher resolution of delamination in PMC compared with the conventional pitch-catch method. It is expected that this ultrasonic hybrid technique can be applied for on-line inspection of flaws in PMC during the fabrication process.

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF