• Title/Summary/Keyword: Non-Cariogenicity Sugar

Search Result 4, Processing Time 0.017 seconds

Purification and Properties of Non-Cariogenicity Sugar Produced by Alkalophilic Bacillus sp. S-1013

  • Ryu, Il-Hwan;Kim, Sun-Sook;Lee, Kap-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.751-758
    • /
    • 2004
  • The NCS(Non-Cariogenicity Sugar) from Bacillus sp. S-1013 was purified by cold acetone and methanol precipitation, and DEAE-cellulose ion-exchange and Sephadex G-100 column chromatographies, to yield an amorphous yellow syrup. The melting point and $[\alpha]_D^{20}$ were 155-$157^{\circ}C$ and +53, respectively. Instrumental analyses such as FT-IR, $^1H-NMR, and ^{13}C-NMR$ showed that the NCS contained an O-H group, C-H, C=O, $NH_2$, anomeric carbon, anomeric proton, N-acetylgalactose, fucose, and neuramic acid, thus, the NCS was determined to be a trisaccharide of Fuc($1\longrightarrow4$)GalNAc($2\longrightarrow6$) NeuAc.

Identification of Alkalophilic Bacillus sp. S-1013 Producing Non-Cariogenicity Sugar Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc and Optimization of Culture Condition for Its Production (비우식성 당 Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc를 생산하는 호알칼리성 Bacillus sp. S-1013의 동정 및 생산조건의 최적화)

  • Ryu Il-Hwan;Kim Sun-Sook;Lee Kap-Sang;Lee Eun-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.235-243
    • /
    • 2006
  • The study was performed to identification of producing microbe Non-Cariogenicity Sugar (NCS; Fuc($1{\to}4$) gaINAc($2{\to}6$)NeuAc) with anti-caries activity, and to optimization of production condition. A typical strain which produced the NCS was identified alkalophilic Bacillus sp. S-1013 through the results of morphological, biochemical and chemotaxonomic characteristics and 16S rDNA sequencing. The optimal medium composition for the maximal production of the NCS from alkalophilic Bacillus sp. S-1013 was as follow: soluble starch 30 g, dextrin 15 g, yeast extract 5 g, peptone 10 g, $K_{2}HPO_4$ 2 g in a liter of distilled water. Optimal temperature and pH were 25 and 11.0, respectively. The highest production of NCS was shown 60 hrs cultivation using the optimal medium, and then NCS productivity and dry cell weight of culture broth increased 4.24 and 2.67 time than initial medium, respectively.

Anti-Cariogenicity of NCS (Non-Cariogenicity Sugar) Produced by Alkalophilic Bacillus sp. S-1013

  • Ryu, Il-Hwan;Kim, Sun-Sook;Lee, Kap-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.759-765
    • /
    • 2004
  • The NCS inhibited the activity of glucosyltransferase which was produced by Streptococcus mutans JC-2, and the rate of inhibition at $100\muM<$ and $200\muM$ were 74.0% and 99.8%, respectively. It was stable in alkali condition, but unstable in acid condition. It was also stable up to $80^{\circ}C$. The kinetic study of the inhibition by NCS was carried out by Lineweaver-Burk plot and Dixon plot. It was non-competitive inhibition, determined by the two plots and $K_i$ and $K_i$ values were $15\muM$ and $19.3\muM$ respectively. The NCS did not show cytotoxicity against human gingival cells at $K_i$ ($15\muM$, $150\muM$, $1,500\mu$ M) concentrations. It had less cytotoxicity than chlohexidin, which has usually been used as the agent of anticaries. To evaluate the industrial applicability of the NCS, human pluck tooth was used. The inhibitory rates of tooth calcification and calcium ion elution by the NCS were 41 % and 2.5 times, respectively. These results suggested that NCS from Bacillus sp. S-1013 is an efficient anticaries agent.

Screening and Characterization of a Novel Erythritol-producing Microorganism, Moniliella suaveloens var. nigra (새로운 에리스리톨 생산균주인 Moniliella suaveolens var. nigra의 탐색 및 특성)

  • 박지만;박홍우
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.331-335
    • /
    • 1998
  • Erythritol is a four-carbon sugar alcohol with a low calorific value and non-cariogenicity. Erythritol is a new functional sweetener which can be used as sugar alternative. Erytheitol dose not cause discomfort such as diarrhoea and flatulence upon ingestion. The purpose of this study is to develope a novel process of erythritol economically in a large scale. To obtain a high erythritol producer, we have screened 3500 colonies from molasses, honey and honey combs. We have selected 40 erythritol-producing microorganisms, one of which yields 140g/L erythritol in 40% glucose medium. We have tested this strain in 5L fermentor to examine the fermentation characteristics. Results of fermentation show that the erythritol production was about 1.4g/L$.$hr in 400g/L glucose media with a 42% conversion. Further improvements require mutation for a higher producer, process optimization to reduce glycerol, and suppression of excessive foaming.

  • PDF