• Title/Summary/Keyword: Non-Axisymmetric

Search Result 210, Processing Time 0.025 seconds

Prediction of Dimensional Instability Resulting from Layer Removal of an Internally Stressed Orthotropic Composite Cylinder

  • Shin, Shang-Hyon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.757-761
    • /
    • 2002
  • When a layer of cylindrical composite component containing an axisymmetric residual stress state is removed from the inner or outer surface, the dimension of the remaining material changes to balance internal forces. Therefore, in order to machine cylindrical composite components within tolerances, it is important to know dimensional changes caused by residual stress redistribution in the body. In this study, analytical solutions for dimensional changes and the redistribution of residual stresses due to the layer removal from a residually stressed cylindrically orthotropic cylinder were developed. The cylinder was assumed to have axisymmetric radial, tangential and axial residual stresses. The result of this study is useful in cases where the initial residual stress distribution in the component has been measured by a non-destructive technique such as neutron diffraction with no information on the effect of layer removal operation on the dimensional changes.

Simulation of axisymmetric flows with swirl in a gas turbine combustor (Swirl이 있는 축대칭 연소기의 난류연소유동 해석)

  • Shin, Dong-Shin;Lim, Jong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.117-121
    • /
    • 2000
  • We developed a general purpose program for the analysis of flows in a gas turbine combustor. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. We calculated a flow inside the C-type diffuser to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. We calculated turbulent diffusion flame behind a bluff body for the combustion simulation. Simulation shows two recirculating region like experimental results. Simulated velocity, turbulent kinetic energy, temperature and concentration distribution agree well with experimental data. Finally, simulation of axisymmetric flows with swirl shows two recirculating region like experimental results.

  • PDF

Numerical Simulations on the Transport Phenomena of the Silicon Melt Various on the Transport Phenomena of the Silicon Melt in Various Size of Crucibles

  • Lee, Sang-Ho;Kim, Min-Cheol;Yi, Kyung-Woo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.35-38
    • /
    • 1998
  • The momentum, heat and mass transport in the melt of several sizes of crucibles are calculated using a three dimensional numerical simulation technique with and without the k-$\varepsilon$ turbulent model. When turbulent model is not used, non-axisymmetric profiles of velocity, temperature and oxygen concentration appear in the melt of all sizes of crucibles. Axisymmetric profiles are obtained when the k-$\varepsilon$ model is adopted.

  • PDF

Dynamic Free-surface Deformations in Axisymmetric Liquid Bridges

  • Sim B.-C.;Kim W.-S.;Zebib A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.160-161
    • /
    • 2003
  • Thermocapillary convection is a surface tension driven flow due to a temperature gradient along an interface. It occurs during a crystal-growth process and therefore understanding the convection is important to material processing in microgravity. Although modelling of the float-zone crystal-growth process has been of interest for a few decades, most studies of liquid bridges assumed non-deformable flat surfaces. In reality, the surface profile, g(t,z), is unknown and should be obtained as a solution to the coupled transport equations along with the surface force balance. Here we report on a numerical study of axisymmetric thermocapillary convection in liquid bridges with deformable surfaces. The interface is determined as part of the complete solution. The influence of the capillary number (Ca), Reynolds number (Re), Prandtl number (Pr) and aspect ratio(Ar) on the dynamics is explored.

  • PDF

EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES (극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발)

  • Ahn, J.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; O$_2$, N$_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF

Dynamic Free-Surface Deformations in Axisymmetric Thermocapillary Convection in Open Cylindrical Annuli (동적인 자유표면을 가진 동심원통에서의 열모세관 대류)

  • Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1560-1565
    • /
    • 2003
  • Thermocapillary convection in an open cylindrical annulus heated from the inside wall is investigated by two-dimensional numerical simulations. The deformable free surface is obtained as a solution of the coupled transport equations at fixed Prandtl and aspect ratio. Only steady convection can be realized in this axisymmetric computations with either non-deformable or deformable surfaces. Dynamic free-surface deformations do not induce transitions to oscillatory convection even at large Reynolds numbers. Free surfaces are convex near the cold wall due to the stagnation point, and concave near the hot wall. Free surface deformation increases with increasing Ca at a fixed Re. Two peaks appear at the free surface with low Re, while additional ripples, four peaks, occur at larger Re. Thermocapillary convection in the open annulus interior is insensitive to variations in Ca.

  • PDF

EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES (극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발)

  • Ahn, J.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; $O_2,\;N_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF

Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet (축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF

A Study on Improvement of Formability for Deep Drawing Process (디프 드로잉 공정의 성형성 향상에 관한 연구)

  • 최병근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.70-76
    • /
    • 1999
  • Recently most of researches for deep drawing process using sheet metal have been performed on the formability of axisymmetric shape but there have not been any concrete reports on the formability of non-axisymmetric shape In addition the conventional shape radius of the punch and die has been determined by the trying-and-error using industrial experimence and post processing test and only approximate shape radius of the punch and die has been determined by the trying-and-error using industrial experience and post processing test and only approximate shape radius of the punch and die has been present So in this study the optimal shape radius of the punch and die in deep drawing process with biaxisymmetric blank shape would be proposed. Through the deep drawing experiment it is found that in order to obtain the optimal products especially shape radius of the punch and die in all processes is very important.

  • PDF

Detonation transmission with an abrupt change in area

  • Hsu, Yao-Chung;Chao, Yei-Chin;Chung, Kung-Ming
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.533-550
    • /
    • 2018
  • Detonation transmission between propane/oxygen (donor) and propane/air (acceptor) with an abrupt area change is experimentally studied. In the donor, there are two types of incident detonation waves: A self-sustained Chapman-Jouguet (CJ) detonation wave and an overdriven detonation wave that is a result of the difference in the initial donor pressure ratios. The piston work is used to characterize the strength of the incident detonation wave. For an incident CJ detonation wave, the re-initiation of a detonation wave in the acceptor depends on the initial pressure in the donor and the expansion ratio. The axisymmetric and non-axisymmetric soot patterns respectively correspond to direct detonation and detonation re-initiation. For an incident overdriven detonation wave, the re-initiation of a detonation wave in the acceptor strongly depends on the degree of overdrive.