• Title/Summary/Keyword: Non Woven Substrate

Search Result 5, Processing Time 0.02 seconds

AN ENGINEERING SCALE STUDY ON RADIATION GRAFTING OF POLYMERIC ADSORBENTS FOR RECOVERY OF HEAVY METAL IONS FROM SEAWATER

  • Prasad, T.L.;Saxena, A.K.;Tewari, P.K.;Sathiyamoorthy, D.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1101-1108
    • /
    • 2009
  • The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater.

A Study on the Physical Property by Construction Condition of Urethane Waterproofing Membrane (우레탄 도막방수재의 시공조건에 따른 물성변화)

  • Kim, Young-Sam;Han, Cheon-Goo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.138-144
    • /
    • 2013
  • This study is for quality standard establishment of urethane waterproofing membrane method which is mostly applied to waterproofing method for underground parking lot and rooftop. The experiments were carried out on color differences, membrane thickness, tensile property by curing period of liquid urethane before placing protective concrete, and resistance of crack movement according to different substrate surface and reinforcement of non-woven fabric. As a result of experiments, it was found that color differences is increase, membrane thickness is thick, tensile property is low as concrete placing period is shorter. In the fatigue property, membrane thickness of 3 mm was not broken, but 1~2 mm was broken and in the case of the membrane reinforced with non-woven fabric was more stable comparatively non-reinforcement one.

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

Effect of Organic Matter Ratios in Substrate and Mulching Materials on Growth of Liatris spicata under Non-irrigated Green Roofs (무관수 옥상녹화에서 유기질 비료와 멀칭재에 따른 리아트리스(Liatris spicata) 생육 반응)

  • Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.130-137
    • /
    • 2012
  • This research evaluated the effectiveness of organic matter ratios in substrate and mulching materials under mn-irrigated condition green roofs by measuring the effects on growth of Liatris spicata. Four mulching materials were installed, i. e. nun-mulched control(CON), volcanic ash soils(VAS), non-woven black fabric mat(NBM) and pine bark(PAK). Three levels of organic maller volume percentage in an amended soil were evaluated, amended soil: organic matter=100:0($A_1O_0$), amended soil: organic matter=80:20($A_4O_1$) and amended soil: organic matter=50:50($A_1O_1$). Plant height, number of leaves, diameter of flower stalk, number of florets, chlorophyll contents, shoot fresh and dry weight were recorded from April to September, 2010, and survival rate was examined on May 2011 of the following year. In the $A_1O_0$, the number of leaves, number of florets and chlorophyll contents were higher in Liatris spicata grown on NBM than other mulching treatments. Especially, plant height, shoot fresh and dry weight were significantly higher. However, it resulted the lowest survival rate than other mulching treatments. 2. In the $A_4O_1$, the plant height, number of leaves, number of florets, shoot fresh and dry weight were higher than other mulching treatments, but there was no significant difference except for the plant height of Liatris spicata grown on NBM. The survival rate was decreased by 40~60%, compared with $A_1O_0$, after overwintering. 3. In the $A_1O_1$, the plant height, number of leaves, diameter of flower stalk, number of florets, chlorophyll contents, shoot fresh and dry weight were slightly higher than other mulching treatments, but there was no significant difference from Liatris spicata grown on NBM and VAS. The survival rate was observed by 0% over all mulching treatments after overwintering. Therefore, the non-woven black fabric mat(NBM) promoted the Liatris spicata's growth and flowering compared with other mulching treatments. However, the survival rate was decreased significantly, and the organic matter ratios were increased after overwintering under non-irrigated green roofs.