• Title/Summary/Keyword: Nominal Input

Search Result 139, Processing Time 0.023 seconds

An Experimental Study on the Effects of a Radiation Shield on the Thermal Load of a Cryochamber (복사 차폐막이 극저온 용기의 부하에 미치는 영향에 관한 실험적 연극)

  • Kim, Young-Min;Park, Seong-Je;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.365-370
    • /
    • 2005
  • Infrared (lR) detectors are widely used for such applications as thermoelstic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Cryochamber considers the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector Cryochamber with radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation. It is found that the thermal load can be substantially reduced by increasing the number of radiation shield.

  • PDF

A Procedure for Statistical Thermal Margin Analysis Using Response Surface Method and Monte Carlo Technique (반응 표면 및 Monte Carlo 방법을 이용한 통계적 열여유도 분석 방법)

  • Hyun Koon Kim;Young Whan Lee;Tae Woon Kim;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.38-47
    • /
    • 1986
  • A statistical procedure, which uses response surface method and Monte Carlo simulation technique, is proposed for analyzing the thermal margin of light water reactor core. The statistical thermal margin analysis method performs the best.estimate thermal margin evaluation by the probabilistic treatment of uncertainties of input parameters. This methodology is applied to KNU-1 core thermal margin analysis under the steady state nominal operating condition. Also discussed are the comparisons with conventional deterministic method and Improved Thermal Design Procedure of Westinghouse. It is deduced from this study that the response surface method is useful for performing the statistical thermal margin analysis and that thermal margin improvement is assured through this procedure.

  • PDF

A novel gain-clamping technique for EDFA in WDM add/drop networks (WDM add/drop망에서 EDFA의 새로운 이득제어 방법)

  • 박정문;신서용;송성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.363-369
    • /
    • 2004
  • We propose, for the first time to our knowledge, a novel gain-clamping method for EDFA in WDM add/drop networks by introducing a disturbance observer technique. The control input signal for gain-clamping is composed of a nominal control signal and an additional control signal of compensating the gain fluctuations caused by channel add/drops. Based on disturbance observer technique, we designed the additional control signal such that it has the compensating information of estimated disturbance resulted from channel add/drops. The circuit for generating additional control signal can easily be implemented by using simple electronic devices. We proved the superiority of the new technique over the previous ones by showing simulation results of minimized dips and spikes that appear in power profile of EDFA in the process of channel add/drops.

Non-stochastic interval arithmetic-based finite element analysis for structural uncertainty response estimate

  • Lee, Dongkyu;Park, Sungsoo;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.469-488
    • /
    • 2008
  • Finite element methods have often been used for structural analyses of various mechanical problems. When finite element analyses are utilized to resolve mechanical systems, numerical uncertainties in the initial data such as structural parameters and loading conditions may result in uncertainties in the structural responses. Therefore the initial data have to be as accurate as possible in order to obtain reliable structural analysis results. The typical finite element method may not properly represent discrete systems when using uncertain data, since all input data of material properties and applied loads are defined by nominal values. An interval finite element analysis, which uses the interval arithmetic as introduced by Moore (1966) is proposed as a non-stochastic method in this study and serves a new numerical tool for evaluating the uncertainties of the initial data in structural analyses. According to this method, the element stiffness matrix includes interval terms of the lower and upper bounds of the structural parameters, and interval change functions are devised. Numerical uncertainties in the initial data are described as a tolerance error and tree graphs of uncertain data are constructed by numerical uncertainty combinations of each parameter. The structural responses calculated by all uncertainty cases can be easily estimated so that structural safety can be included in the design. Numerical applications of truss and frame structures demonstrate the efficiency of the present method with respect to numerical analyses of structural uncertainties.

An Analysis of Energy Savings on the Solar-Absorption Heat Pump Systems for the Residential Use with the consideration of Annual Performance (연간 성능을 고려한 가정용 태양열-흡수식 히트펌프의 에너지 절약효과 분석)

  • Lee, J.H.;Lee, K.S.;Won, S.H.;Lee, M.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.263-275
    • /
    • 1991
  • Studies on the annual performance of three different type of solar-absorption heat pump system (parallel type, series type, and generator type) are carried out by using the computer simulation. These include the calculation of solar energy from the solar collector, and the revision of computer package, developed by Oak Ridge National Laboratory, to predict the annual performance. Finally using weather data and load conditions, the annual performance are obtained. Results show that the annual operating costs of three solar-absorption heat pump systems are almost same values and 44% lower than that of the pure absorption heat pump system. The total annual input energys of solar-absorption heat pump systems are also about 44% lower than that of the pure absorption heat pump. The nominal size of the solar-absorption heat pump systems can be reduced to a value of 55% that of the pure absorption heat pump that would normally be specified under identical conditions.

  • PDF

Design of Fixed Phase Control Circuit of Group Delay Line using Adaptive Vector Control (자동적응 벡터 제어를 이용한 군속도 지연선로의 고정 위상 제어기 설계)

  • 정용채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1376-1385
    • /
    • 2000
  • The phase characteristic of delay line in feedfarward linearizer has been changed due to variation of operating temperature. In this paper, design method of fixed phase control circuit of group delay line using adaptive vector control is derived. To maintain transfer characteristics of nominal operating temperature, the error correlated signals, which are changed adaptively due to changing of temperature, are added to main signals. The proposed method maintains transfer characteristics under 0.06dB of insertion loss and 0.36$^{\circ}$ of phase variation in case of 1-tone(880 MHz) and under 0.07 dB of insertion loss and 0.35$^{\circ}$ of phase variation in case of 2-tones(877 MHz, 882 MHz) for 10dB input power dynamic range and +/-10$^{\circ}$ phase variation respectively.

  • PDF

An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields (복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구)

  • Kim, Young-Min;Kang, Byung-Ha;Park, Seong-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.

Mathematical approach for optimization of magnetohydrodynamic circulation system

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.654-664
    • /
    • 2019
  • The geometrical and electromagnetic variables of a rectangular-type magnetohydrodynamic (MHD) circulation system are optimized to solve MHD equations for the active decay heat removal system of a prototype Gen-IV sodium fast reactor. Decay heat must be actively removed from the reactor coolant to prevent the reactor system from exceeding its temperature limit. A rectangular-type MHD circulation system is adopted to remove this heat via an active system that produces developed pressure through the Lorentz force of the circulating sodium. Thus, the rectangular-type MHD circulation system for a circulating loop is modeled with the following specifications: a developed pressure of 2 kPa and flow rate of $0.02m^3/s$ at a temperature of 499 K. The MHD equations, which consist of momentum and Maxwell's equations, are solved to find the minimum input current satisfying the nominal developed pressure and flow rate according to the change of variables including the magnetic flux density and geometrical variables. The optimization shows that the rectangular-type MHD circulation system requires a current of 3976 A and a magnetic flux density of 0.037 T under the conditions of the active decay heat removal system.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

A study on the accuracy of multi-task learning structure artificial neural network applicable to multi-quality prediction in injection molding process (사출성형공정에서 다수 품질 예측에 적용가능한 다중 작업 학습 구조 인공신경망의 정확성에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, an artificial neural network(ANN) was constructed to establish the relationship between process condition prameters and the qualities of the injection-molded product in the injection molding process. Six process parmeters were set as input parameter for ANN: melt temperature, mold temperature, injection speed, packing pressure, packing time, and cooling time. As output parameters, the mass, nominal diameter, and height of the injection-molded product were set. Two learning structures were applied to the ANN. The single-task learning, in which all output parameters are learned in correlation with each other, and the multi-task learning structure in which each output parameters is individually learned according to the characteristics, were constructed. As a result of constructing an artificial neural network with two learning structures and evaluating the prediction performance, it was confirmed that the predicted value of the ANN to which the multi-task learning structure was applied had a low RMSE compared with the single-task learning structure. In addition, when comparing the quality specifications of injection molded products with the prediction values of the ANN, it was confirmed that the ANN of the multi-task learning structure satisfies the quality specifications for all of the mass, diameter, and height.