• Title/Summary/Keyword: Noisy Speech Recognition

Search Result 228, Processing Time 0.021 seconds

Voice Activity Detection Based on Entropy in Noisy Car Environment (차량 잡음 환경에서 엔트로피 기반의 음성 구간 검출)

  • Roh, Yong-Wan;Lee, Kue-Bum;Lee, Woo-Seok;Hong, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Accurate voice activity detection have a great impact on performance of speech applications including speech recognition, speech coding, and speech communication. In this paper, we propose methods for voice activity detection that can adapt to various car noise situations during driving. Existing voice activity detection used various method such as time energy, frequency energy, zero crossing rate, and spectral entropy that have a weak point of rapid. decline performance in noisy environments. In this paper, the approach is based on existing spectral entropy for VAD that we propose voice activity detection method using MFB(Met-frequency filter banks) spectral entropy, gradient FFT(Fast Fourier Transform) spectral entropy. and gradient MFB spectral entropy. FFT multiplied by Mel-scale is MFB and Mel-scale is non linear scale when human sound perception reflects characteristic of speech. Proposed MFB spectral entropy method clearly improve the ability to discriminate between speech and non-speech for various in noisy car environments that achieves 93.21% accuracy as a result of experiments. Compared to the spectral entropy method, the proposed voice activity detection gives an average improvement in the correct detection rate of more than 3.2%.

  • PDF

Acoustic Model Transformation Method for Speech Recognition Employing Gaussian Mixture Model Adaptation Using Untranscribed Speech Database (미전사 음성 데이터베이스를 이용한 가우시안 혼합 모델 적응 기반의 음성 인식용 음향 모델 변환 기법)

  • Kim, Wooil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1047-1054
    • /
    • 2015
  • This paper presents an acoustic model transform method using untranscribed speech database for improved speech recognition. In the presented model transform method, an adapted GMM is obtained by employing the conventional adaptation method, and the most similar Gaussian component is selected from the adapted GMM. The bias vector between the mean vectors of the clean GMM and the adapted GMM is used for updating the mean vector of HMM. The presented GAMT combined with MAP or MLLR brings improved speech recognition performance in car noise and speech babble conditions, compared to singly-used MAP or MLLR respectively. The experimental results show that the presented model transform method effectively utilizes untranscribed speech database for acoustic model adaptation in order to increase speech recognition accuracy.

Robust Histogram Equalization Using Compensated Probability Distribution

  • Kim, Sung-Tak;Kim, Hoi-Rin
    • MALSORI
    • /
    • v.55
    • /
    • pp.131-142
    • /
    • 2005
  • A mismatch between the training and the test conditions often causes a drastic decrease in the performance of the speech recognition systems. In this paper, non-linear transformation techniques based on histogram equalization in the acoustic feature space are studied for reducing the mismatched condition. The purpose of histogram equalization(HEQ) is to convert the probability distribution of test speech into the probability distribution of training speech. While conventional histogram equalization methods consider only the probability distribution of a test speech, for noise-corrupted test speech, its probability distribution is also distorted. The transformation function obtained by this distorted probability distribution maybe bring about miss-transformation of feature vectors, and this causes the performance of histogram equalization to decrease. Therefore, this paper proposes a new method of calculating noise-removed probability distribution by using assumption that the CDF of noisy speech feature vectors consists of component of speech feature vectors and component of noise feature vectors, and this compensated probability distribution is used in HEQ process. In the AURORA-2 framework, the proposed method reduced the error rate by over $44\%$ in clean training condition compared to the baseline system. For multi training condition, the proposed methods are also better than the baseline system.

  • PDF

Parameter Considering Variance Property for Speech Recognition in Noisy Environment (잡음환경에서의 음성인식을 위한 변이특성을 고려한 파라메터)

  • Park, Jin-Young;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.469-472
    • /
    • 2005
  • This paper propose about effective speech feature parameter that have robust character in effect of noise in realizing speech recognition system. Established MFCC that is the basic parameter used to ASR(Automatic Speech Recognition) and DCTCs that use DCT in basic parameter. Also, proposed delta-Cepstrum and delta-delta-Cepstrum parameter that reconstruct Cepstrum to have information for variation of speech. And compared recognition performance in using HMM. For dimension reduction of each parameter LDA algorithm apply and compared recognition. Results are presented reduced dimension delta-delta-Cepstrum parameter in using LDA recognition performance that improve more than existent parameter in noise environment of various condition.

  • PDF

Speech Recognition in Noisy Environments using the NOise Spectrum Estimation based on the Histogram Technique (히스토그램 처리방법에 의한 잡음 스펙트럼 추정을 이용한 잡음환경에서의 음성인식)

  • Kwon, Young-Uk;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.68-75
    • /
    • 1997
  • Spectral subtraction is widely-used preprocessing technique for speech recognition in additive noise environments, but it requires a good estimate of the noise power spectrum. In this paper, we employ the histogram technique for the estimation of noise spectrum. This technique has advantages over other noise estimation methods in that it does not requires speech/non-speech detection and can estimate slowly-varying noise spectra. According to the speaker-independent isolated word recognition in both colored Gaussian and car noise environments under various SNR conditions. Histogram-technique-based spectral subtraction method yields superier performance to the one with conventional noise estimation method using the spectral average of initial frames during non-speech period.

  • PDF

A Study on Noisy Speech Recognition Using Discriminative Training for PMC Algorithm (PMC 방식에서의 분별적 학습을 이용한 잡음 음성인식에 관한 연구)

  • 정용주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2000
  • In this paper, we proposed a discriminative adaptation method for PMC algorithm and achieved improved speech recognition rate. For the adaptation, we adopted modified PMC(MPMC) which is a variant of PMC and discriminatively adapted the association factor for each mixture of the HMM in the MPMC. From the recognition experiments, the proposed method showed better recognition rate than the conventional PMC. Also, compared with STAR algorithm which is another model parameter compensation method, the proposed method showed superior performance when the SNR is very low and the adaptation data is not sufficient.

  • PDF

Robust Voice Activity Detection in Noisy Environment Using Entropy and Harmonics Detection (엔트로피와 하모닉 검출을 이용한 잡음환경에 강인한 음성검출)

  • Choi, Gab-Keun;Kim, Soon-Hyob
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.169-174
    • /
    • 2010
  • This paper explains end-point detection method for better speech recognition rates. The proposed method determines speech and non-speech region with the entropy and the harmonic detection of speech. The end-point detection using entropy on the speech spectral energy has good performance at the high SNR(SNR 15dB) environments. At the low SNR environment(SNR 0dB), however, the threshold level of speech and noise varies, so the precise end-point detection is difficult. Therefore, this paper introduces the end-point detection methods which uses speech spectral entropy and harmonics. Experiment shows better performance than the conventional entropy methods.

Efficient Compensation of Spectral Tilt for Speech Recognition in Noisy Environment (잡음 환경에서 음성인식을 위한 스펙트럼 기울기의 효과적인 보상 방법)

  • Cho, Jungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.199-206
    • /
    • 2017
  • Environmental noise can degrade the performance of speech recognition system. This paper presents a procedure for performing cepstrum based feature compensation to make recognition system robust to noise. The approach is based on direct compensation of spectral tilt to remove effects of additive noise. The noise compensation scheme operates in the cepstral domain by means of calculating spectral tilt of the log power spectrum. Spectral compensation is applied in combination with SNR-dependent cepstral mean compensation. Experimental results, in the presence of white Gaussian noise, subway noise and car noise, show that the proposed compensation method achieves substantial improvements in recognition accuracy at various SNR's.

Cepstrum PDF Normalization Method for Speech Recognition in Noise Environment (잡음환경에서의 음성인식을 위한 켑스트럼의 확률분포 정규화 기법)

  • Suk Yong Ho;Lee Hwang-Soo;Choi Seung Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.224-229
    • /
    • 2005
  • In this paper, we Propose a novel cepstrum normalization method which normalizes the probability density function (pdf) of cepstrum for robust speech recognition in additive noise environments. While the conventional methods normalize the first- and/or second-order statistics such as the mean and/or variance of the cepstrum. the proposed method fully normalizes the statistics of cepstrum by making the pdfs of clean and noisy cepstrum identical to each other For the target Pdf, the generalized Gaussian distribution is selected to consider various densities. In recognition phase, we devise a table lookup method to save computational costs. From the speaker-independent isolated-word recognition experiments, we show that the Proposed method gives improved Performance compared with that of the conventional methods, especially in heavy noise environments.

Experiments on Various Spatial-Temporal Features for Korean Lipreading (한국어 입술 독해에 적합한 시공간적 특징 추출)

  • 오현화;김인철;김동수;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.29-32
    • /
    • 2001
  • Visual speech information improves the performance of speech recognition, especially in noisy environment. We have tested the various spatial-temporal features for the Korean lipreading and evaluated the performance by using a hidden Markov model based classifier. The results have shown that the direction as well as the magnitude of the movement of the lip contour over time is useful features for the lipreading.

  • PDF