• 제목/요약/키워드: Noisy Image

검색결과 324건 처리시간 0.017초

웨이블릿 부대역의 에너지와 DC 값에 근거한 적응적 블록 복구 (Adaptive Block Recovery Based on Subband Energy and DC Value in Wavelet Domain)

  • 현승화;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.95-102
    • /
    • 2005
  • 본 논문은 잡음이 존재하는 전송 선로를 통한 영상 전송 시 발생하는 손실 블록에 대한 방향성 복구 방법을 제안한다. 손실된 블록은 웨이블릿 부대역의 에너지(EWS)와 DC값의 차이(DDC)에 의해 적응적으로 선택되어진 이웃 블록들을 이용한 선형 보간법에 의해 복구된다. 고정된 4-이웃 블록을 사용하여 복구하는 방법은 강한 에지영역에서 블록화된 블러링 효과를 발생시킨다. 본 논문의 방향성 복구 방법은 에지나 영상 내의 방향성 정보에 따라 적응적으로 변하는 이웃 블록을 사용하기 때문에 강한 에지영역에서 효과적이다. EWS만 이용하여 이웃블록을 선택하는 경우는 수직, 수평 에지에서는 좋은 성능을 보이지만 대각 에지에 대해서는 약점을 가지고 있다. DDC만을 이용하여 이웃블록을 선택하는 경우는 대각 에지에서는 좋은 성능을 보이지만 에지 프로파일에 따라 약점을 보인다. 따라서 EWS와 DDC 정보를 함께 이용하여 적응적으로 손실 블록을 복구할 이웃블록을 선택함으로써 두 가지방법의 약점을 서로 보완하여 더 좋은 성능을 보일 수 있다. 모의실험 결과 본 논문의 블록 복구 방법은 객관적 평가와 주관적 평가에서 모두 좋은 성능을 보였다.

영상의 이진화평면 분해에 기반한 확장된 블록매칭 잡음제거 (Enhanced Block Matching Scheme for Denoising Images Based on Bit-Plane Decomposition of Images)

  • 복거철
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.321-326
    • /
    • 2019
  • 블록매칭을 이용한 잡음제거 방법은 영상 내의 이웃하는 블록들이 서로 비슷한 특질을 가지고 있다는 실험적 관찰에 기반한 방법으로서 잡음제거에 있어서 우수한 성능을 보인다. 그러나 블록매칭 잡음제거 방법은 유사한 블록을 찾고 수집하는 작업이 영상 내의 이웃 블록들을 대상으로 이루어지며 참조블록의 특질은 유사한 블록을 찾는 목적 외에는 사용되지 않는다. 따라서 가우스분포 상의 이상치(outlier)가 존재할 때 잡음제거 성능은 그 값의 영향을 받을 수 밖에 없다. 본 논문에서는 잡음에 오염된 영상을 이진화평면으로 분해하여 각 블록의 참 화소값의 범위를 추정하고 이를 근거로 이상치 값을 추정된 참 화소값의 범위내의 값으로 대치하는 방법을 통해 확장된 블록매칭 기법을 제안한다. 전통적인 가우시안 필터는 잡음제거 대상이 되는 화소와 이웃하는 화소들의 값을 모두 계산에 적용하므로 영상의 세부적인 특질이 보존되지 않는 단점이 있는데 이를 극복하기 위해 이진화평면을 구성하여 해당 화소의 참값 범위를 추정한 후 그 범위 안에 속하는 화소값만을 이용하여 잡음제거를 하므로 세부적인 특질이 보존될 수 있는 장점이 있다. 가우시안 필터의 장점과 블록매칭의 장점을 융합하는 방법을 통해 성능 향상을 꾀할 수 있을 것으로 예상되며 실제로 잡음이 추가된 다양한 영상을 통해 실험을 한 결과 잡음제거의 성능을 향상시킬 수 있음을 검증하였다.

전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가 (Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography)

  • 이진욱;기성훈;이강석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.11-20
    • /
    • 2022
  • 이 연구의 주요 목적은 고속철도 콘크리트 궤도 슬래브의 콘크리트 슬래브(track concrete layer, TCL)와 도상안정층(hydraulically stabilized based course, HSB) 사이 층분리를 평가하기 위한 비파괴검사법으로 전단파 토모그래피 기술의 활용가능성을 실험적으로 확인하는 것이다. 이를 위하여 다채널 전단파 측정 장치(MIRA)를 활용하여 실물 크기로 제작된 고속철도 콘크리트 궤도 슬래브 실험체 내부의 층분리 결함을 평가하였다. 실물실험체는 Rheda 2000 시스템에 따라 설계 및 시공되었으며, 노반 위에 HSB를 타설하고, 그 위에 TCL이 타설된 2층 슬래브 구조를 갖는다. 실물실험체는 일부구간의 HSB상부에 스티로폼으로 제작된 인공결함(가로 및 세로가 각각 400mm이고 두께가 각각 5mm, 15mm인 압출폴리스티렌폼(XPS)보드 2개)을 삽입하여, TCL과 HSB 사이에 층분리 결함이 생기도록 시공하였다. 시험체의 층분리 구간에서 얻은 콘크리트 단층이미지는 층분리에 따른 균열 및 HSB와 지반사이의 계면에서 반사되는 신호를 효과적으로 보여 주었다. 한편 초음파 토모그래피 이미지에서 TCL 콘크리트의 매입물(철근, 트러스, 인서트 등)에서 반사된 신호와 층분리 결함 신호를 구분하기 위한 노이즈 제거를 위한 이미지 처리방법을 적용하여 층분리 결함을 효과적으로 분리하였다. 토모그래피 이미지에서 추출된 층분리 결함의 크기정보와 공간정보를 통합하여 층분리 지도로 재구성하였으며, 층분리 결함의 위치 및 크기를 시각화하는데 효과적인 것을 확인하였다.

인조 번호판을 이용한 자동차 번호인식 성능 향상 기법 (Improved Method of License Plate Detection and Recognition using Synthetic Number Plate)

  • 장일식;박구만
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.453-462
    • /
    • 2021
  • 자동차 번호인식을 위해선 수많은 번호판 데이터가 필요하다. 번호판 데이터는 과거의 번호판부터 최신의 번호판까지 균형 있는 데이터의 확보가 필요하다. 하지만 실제 과거의 번호판부터 최신의 번호판의 데이터를 획득하는데 어려움이 있다. 이러한 문제를 해결하기 위해 인조 번호판을 이용하여 자동차 번호판을 생성하여 딥러닝을 통한 번호판 인식 연구가 진행되고 있다. 하지만 인조 데이터는 실제 데이터와 차이가 존재하며, 이러한 문제를 해결하기 위해 다양한 데이터 증강 기법을 사용한다. 기존 데이터 증강 방식은 단순히 밝기, 회전, 어파인 변환, 블러, 노이즈등의 방법을 사용하였다. 본 논문에서는 데이터 증강 방법으로 인조데이터를 실제 데이터 스타일로 변환하는 스타일 변환 방법을 적용한다. 또한 실제 번호판 데이터는 원거리가 많고 어두운 경우 잡음이 많이 존재한다. 단순히 입력데이터를 가지고 문자를 인식할 경우 오인식의 가능성이 높다. 이러한 경우 문자인식 향상을 위해 본 논문에서는 문자인식을 위하여 화질개선 방법으로 DeblurGANv2 방법을 적용하여 번호판 인식 정확도를 높였다. 번호판 검출 및 번호판 번호인식을 위한 딥러닝의 방식은 YOLO-V5를 사용하였다. 인조 번호판 데이터 성능을 판단하기 위해 자체적으로 확보한 자동차 번호판을 수집하여 테스트 셋을 구성하였다. 스타일 변환을 적용하지 않은 번호판 검출이 0.614mAP를 기록하였다. 스타일 변환을 적용한 결과 번호판 검출 성능이 0.679mAP 기록하여 성능이 향상되었음을 확인하였다. 또한 번호판 문자인식에는 화질 개선을 하지 않은 검출 성공률은 0.872를 기록하였으며, 화질 개선 후 검출 성능이 0.915를 기록하여 성능 향상이 되었음을 확인 하였다.