• Title/Summary/Keyword: Noise source imaging

Search Result 65, Processing Time 0.026 seconds

EMI Debugging Technique of LED Lighting Module (LED 조명기구의 EMI 디버깅 기술)

  • Kim, Jin Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.151-154
    • /
    • 2020
  • Radiation noise due to EMI noise generated by the driving circuits of LED lighting devices in a medical imaging room was reduced by decreasing the noise source in the driving circuits and changing the number of corrections in EMI filters. Noise attenuation and filter changes enabled driving circuits that reduced the electromagnetic waves. Such circuits were efficiently designed by using capacitors and inverters in a given space. Therefore, the malfunction of radiation devices can be minimized by using EMI-reduction filter circuits, and reliable operation of medical devices can be expected by blocking electromagnetic waves.

Development of Prototype Multi-channel Digital EIT System with Radially Symmetric Architecture

  • Oh, Tong-In;Baek, Sang-Min;Lee, Jae-Sang;Woo, Eung-Je;Park, Chun-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.215-221
    • /
    • 2005
  • We describe the development of a prototype multi-channel electrical impedance tomography (EIT) system. The EIT system can be equipped with either a single-ended current source or a balanced current source. Each current source can inject current between any chosen pair of electrodes. In order to reduce the data acquisition time, we implemented multiple digital voltmeters simultaneously acquiring and demodulating voltage signals. Each voltmeter measures a differential voltage between a fixed pair of adjacent electrodes. All voltmeters are configured in a radially symmetric architecture to optimize the routing of wires and minimize cross-talks. To maximize the signal-to-noise ratio, we implemented techniques such as digital waveform generation, Howland current pump circuit with a generalized impedance converter, digital phase-sensitive demodulation, tri-axial cables with both grounded and driven shields, and others. The performance of the EIT system was evaluated in terms of common-mode rejection ratio, signal-to-noise ratio, and reciprocity error. Future design of a more innovative EIT system including battery operation, miniaturization, and wireless techniques is suggested.

Simple Spectral Calibration Method and Its Application Using an Index Array for Swept Source Optical Coherence Tomography

  • Jung, Un-Sang;Cho, Nam-Hyun;Kim, Su-Hwan;Jeong, Hyo-Sang;Kim, Jee-Hyun;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.386-393
    • /
    • 2011
  • In this study, we report an effective k-domain linearization method with a pre-calibrated indexed look-up table. The method minimizes k-domain nonlinear characteristics of a swept source optical coherence tomography (SS-OCT) system by using two arrays, a sample position shift index and an intensity compensation array. Two arrays are generated from an interference pattern acquired by connecting a Fabry-Perot interferometer (FPI) and an optical spectrum analyzer (OSA) to the system. At real time imaging, the sample position is modified by location movement and intensity compensation with two arrays for linearity of wavenumber. As a result of evaluating point spread functions (PSFs), the signal to noise ratio (SNR) is increased by 9.7 dB. When applied to infrared (IR) sensing card imaging, the SNR is increased by 1.29 dB and the contrast noise ratio (CNR) value is increased by 1.44. The time required for the linearization and intensity compensation is 30 ms for a multi thread method using a central processing unit (CPU) compared to 0.8 ms for compute unified device architecture (CUDA) processing using a graphics processing unit (GPU). We verified that our linearization method is appropriate for applying real time imaging of SS-OCT.

Impact of aperture-thickness on the real-time imaging characteristics of coded-aperture gamma cameras

  • Park, Seoryeong;Boo, Jiwhan;Hammig, Mark;Jeong, Manhee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1266-1276
    • /
    • 2021
  • The mask parameters of a coded aperture are critical design features when optimizing the performance of a gamma-ray camera. In this paper, experiments and Monte Carlo simulations were performed to derive the minimum detectable activity (MDA) when one seeks a real-time imaging capability. First, the impact of the thickness of the modified uniformly redundant array (MURA) mask on the image quality is quantified, and the imaging of point, line, and surface radiation sources is demonstrated using both cross-correlation (CC) and maximum likelihood expectation maximization (MLEM) methods. Second, the minimum detectable activity is also derived for real-time imaging by altering the factors used in the image quality assessment, consisting of the peak-to-noise ratio (PSNR), the normalized mean square error (NMSE), the spatial resolution (full width at half maximum; FWHM), and the structural similarity (SSIM), all evaluated as a function of energy and mask thickness. Sufficiently sharp images were reconstructed when the mask thickness was approximately 2 cm for a source energy between 30 keV and 1.5 MeV and the minimum detectable activity for real-time imaging was 23.7 MBq at 1 m distance for a 1 s collection time.

Photon-Counting Detector CT: Key Points Radiologists Should Know

  • Andrea Esquivel;Andrea Ferrero;Achille Mileto;Francis Baffour;Kelly Horst;Prabhakar Shantha Rajiah;Akitoshi Inoue;Shuai Leng;Cynthia McCollough;Joel G. Fletcher
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.854-865
    • /
    • 2022
  • Photon-counting detector (PCD) CT is a new CT technology utilizing a direct conversion X-ray detector, where incident X-ray photon energies are directly recorded as electronical signals. The design of the photon-counting detector itself facilitates improvements in spatial resolution (via smaller detector pixel design) and iodine signal (via count weighting) while still permitting multi-energy imaging. PCD-CT can eliminate electronic noise and reduce artifacts due to the use of energy thresholds. Improved dose efficiency is important for low dose CT and pediatric imaging. The ultra-high spatial resolution of PCD-CT design permits lower dose scanning for all body regions and is particularly helpful in identifying important imaging findings in thoracic and musculoskeletal CT. Improved iodine signal may be helpful for low contrast tasks in abdominal imaging. Virtual monoenergetic images and material classification will assist with numerous diagnostic tasks in abdominal, musculoskeletal, and cardiovascular imaging. Dual-source PCD-CT permits multi-energy CT images of the heart and coronary arteries at high temporal resolution. In this special review article, we review the clinical benefits of this technology across a wide variety of radiological subspecialties.

Comparative Evaluation of Single-Energy CT and Dual-Energy CT in Brain Angiography : Using a Rando Phantom and OSLD (뇌혈관조영검사 시 단일에너지 CT와 이중에너지 CT의 비교평가 : 화질 및 유효선량평가)

  • Byeong-Geun Shin;Seong-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.809-817
    • /
    • 2023
  • Single source and dual source measurements using anthropomorphic phantoms in which the phantoms are lined up in human body equivalents use OSLD (Optically Stimulated Luminescence Dosimeter), so the effective dose is calculated using OSLD. For hospital images, SNR (Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were measured in MCA (Middle Cerebral Artery) for single source and dual source, and for phantom images, SNR and CNR were measured for brain parenchyma of single source and dual source. For hospital imaging, SNR and CNR were measured in MCA for both single-source and dual-source, and for phantom images, SNR and CNR were measured for brain parenchyma from single-source and dual-source. As a result of comparing the SNR and CNR of the hospital image and the phantom image, there was no statistical difference. Comparing patient doses in hospital images, the effective dose of the dual source was 53.53% less and the effective dose of the dual energy phantom was 57.94% less. The dose can be increased in other areas, but the cerebrovascular area is useful because the dose is small.

Total-internal-reflection Holographic Photo-lithography by Using Incoherent Light (비가간섭광을 이용한 내부전반사 홀로그래픽 리소그라피)

  • Lee, Joon-Sub;Park, Woo-Jae;Lee, Ji-Whan;Song, Seok-Ho;Lee, Sung-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.334-338
    • /
    • 2009
  • Recently, with increasing demand for flat-panel display product, methods for large area patterning are required. TIR (total internal reflection) holographic photo-lithography isstudied as one of the methods of large area lithography. In conventional TIR holography, light sources for hologram recording and image reconstruction are coherent beams such as laser beams. If the image is reconstructed with an incoherent light source such a UV lamp, the image noise from the coherence of light will be reduced and the UV lamp will be a better light source for large area exposure. We analyzed the effect of spectral bandwidth and angular bandwidth of the light source in image reconstruction and verified image blurring with experiments. For large area patterning which has micro-scale line width, it is expected that TIR holographic photo lithography by UV lamp will become a low-noise and low-priced technique.

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.

Investigation of Radiation Effects on the Signal and Noise Characteristics in Digital Radiography (디지털 래디오그라피의 신호 및 잡음 특성에 대한 방사선 영향에 관한 연구)

  • Kim, Ho-Kyung;Cho, Min-Kook;Graeve, Thorsten
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.756-767
    • /
    • 2007
  • For the combination of phosphor screens having various thicknesses and a photodiode array manufactured by complementary metal-oxide-semiconductor (CMOS) process, we report the observation of image-quality degradation under the irradiation of 45-kVp spectrum x rays. The image quality was assessed in terms of dark pixel signal, dynamic range, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). For the accumulation of the absorbed dose, the radiation-induced increase both in dark signal and noise resulted in the gradual reduction in dynamic range. While the MTF was only slightly affected by the total ionizing dose, the noise power in the case of $Min-R^{TM}$ screen, which is the thinnest one among the considered screens in this study, became larger as the total dose was increased. This is caused by incomplete correction of the dark current fixed-pattern noise. In addition, the increase tendency in NPS was independent of the spatial frequency. For the cascaded model analysis, the additional noise source is from direct absorption of x-ray photons. The change in NPS with respect to the total dose degrades the DQE. However, with carefully updated and applied correction, we can overcome the detrimental effects of increased dark current on NPS and DQE. This study gives an initial motivation that the periodic monitoring of the image-quality degradation is an important issue for the long-term and healthy use of digital x-ray imaging detectors.