Development of Prototype Multi-channel Digital EIT System with Radially Symmetric Architecture

  • Oh, Tong-In (Department of Biomedical Engineering, Kyung Hee University) ;
  • Baek, Sang-Min (Department of Biomedical Engineering, Kyung Hee University) ;
  • Lee, Jae-Sang (Department of Biomedical Engineering, Kyung Hee University) ;
  • Woo, Eung-Je (Department of Biomedical Engineering, Kyung Hee University) ;
  • Park, Chun-Jae (Impedance Imaging Research Center, Kyung Hee University)
  • Published : 2005.08.01

Abstract

We describe the development of a prototype multi-channel electrical impedance tomography (EIT) system. The EIT system can be equipped with either a single-ended current source or a balanced current source. Each current source can inject current between any chosen pair of electrodes. In order to reduce the data acquisition time, we implemented multiple digital voltmeters simultaneously acquiring and demodulating voltage signals. Each voltmeter measures a differential voltage between a fixed pair of adjacent electrodes. All voltmeters are configured in a radially symmetric architecture to optimize the routing of wires and minimize cross-talks. To maximize the signal-to-noise ratio, we implemented techniques such as digital waveform generation, Howland current pump circuit with a generalized impedance converter, digital phase-sensitive demodulation, tri-axial cables with both grounded and driven shields, and others. The performance of the EIT system was evaluated in terms of common-mode rejection ratio, signal-to-noise ratio, and reciprocity error. Future design of a more innovative EIT system including battery operation, miniaturization, and wireless techniques is suggested.

Keywords

References

  1. J. G. Webster, ed., Electrical Impedance Tomography, Adam Hilger, Bristol, UK, 1990
  2. K. Boone, D. Barber, and B. H. Brown, 'Imaging with electricity: report of the European concerted action on impedance tomography', J. Med. Eng. Tech., Vol. 21, pp. 201-232, 1997 https://doi.org/10.3109/03091909709070013
  3. D. Holder, ed., Electrical Impedance Tomography: Methods, History and Applications, IOP Publishing, London, UK, 2005
  4. A. J. Wilson, P. Milnes, A. R. Waterworth, R. H. Smallwood, and B. H. Brown, 'Mk3.5: a modular, multi-frequency successor to the Mk3a EIS/EIT system', Physiol. Meas., Vol. 22, pp. 49-54, 2001 https://doi.org/10.1088/0967-3334/22/1/307
  5. R. D. Cook, G. J. Saulnier, D. G. Gisser, J. G. Goble, J. C. Newell, and D. Isaacson, 'ACT3: a high-speed, high-precision electrical impedance tomography', IEEE Trans. Biomed. Eng., Vol. 41, pp. 713-722, 1994 https://doi.org/10.1109/10.310086
  6. D. Isaacson, 'Distinguishability of conductivities by electric current computed tomography' , IEEE Trans. Med. Imag., Vol. 5, pp. 91-95, 1986 https://doi.org/10.1109/TMI.1986.4307752
  7. A. D. Seagar and B. H. Brown, 'Limitations in hardware design in impedance imaging' , Clin. Phys. Physiol. Meas., Vol. 8 Suppl. A, pp. 85-90, 1987 https://doi.org/10.1088/0143-0815/8/4A/011
  8. B. H. Brown and A. D. Seagar, 'The Sheffield data collection system' , Clin. Phys. Physiol. Meas., Vol. 8 Suppl. A, pp. 91-97, 1987 https://doi.org/10.1088/0143-0815/8/4A/012
  9. T. I. Oh, S. M. Baek, J. S. Lee, and E. J. Woo, 'Design and implementation of digital electrical impedance tomography system', J. Biomed. Eng. Res., Vol. 25, No. 4, pp. 269-275, 2004 https://doi.org/10.2220/biomedres.25.269
  10. R. Halter, A. Hartov, and K. D. Paulsen, 'Design and implementation of a high frequency electrical impedance tomography system', Physiol. Meas., Vol. 25, pp. 379-390, 2004 https://doi.org/10.1088/0967-3334/25/1/041
  11. S. Nebuya, M. Noshiro, B. H. Brown, R. H. Smallwood, and P. Milnes, 'Accuracy of an optically isolated tetra-polar impedance measurement system', Med. Biol. Eng. Comput., Vol. 40, pp. 647-649, 2002 https://doi.org/10.1007/BF02345303
  12. S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd. ed., McGraw-Hill, NY, USA, 2002
  13. A. S. Ross, G. J. Saulnier, J. C. Newell, and D. Isaacson, 'Current source design for electrical impedance tomography' , Physiol. Meas., Vol. 24, pp. 509-516, 2003 https://doi.org/10.1088/0967-3334/24/2/361
  14. E. J. Woo, J. K. Seo, and S. Y. Lee, 'Magnetic resonance electrical impedance tomography' , in D. Holder, ed., Electrical Impedance Tomography: Methods, History and Applications, IOP Publishing, London, UK, 2005
  15. S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, T. S. Kim, O. Kwon, and J. K. Seo, 'Electrical conductivity images of biological tissue phantoms in MREIT', Physiol. Meas., Vol. 26, pp. S279-S288, 2005 https://doi.org/10.1088/0967-3334/26/2/026