• 제목/요약/키워드: Noise robust speech recognition

검색결과 134건 처리시간 0.023초

잡음 차폐를 이용한 온라인 모델 보상 (On-line model compensation using noise masking effect for robust speech recognition)

  • 정규준;조훈영;오영환
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.215-218
    • /
    • 2003
  • In this paper we apply PMC (parallel model combination) to speech recognition system online. As a representative of model based noise compensation techniques, PMC compensates environmental mismatch by combining pretrained clean speech models and real-time estimated noise information. This is very effective approach for compensating extreme environmental mismatch but is inadequate to use in on-line system for heavy computational cost. To reduce the computational cost and to apply PMC online, we use a noise masking effect - the energy in a frequency band is dominated either by clean speech energy or by noise energy - in the process of model compensation. Experiments on artificially produced noisy speech data confirm that the proposed technique is fast and effective for the on-line model compensation.

  • PDF

A Novel Integration Scheme for Audio Visual Speech Recognition

  • Pham, Than Trung;Kim, Jin-Young;Na, Seung-You
    • 한국음향학회지
    • /
    • 제28권8호
    • /
    • pp.832-842
    • /
    • 2009
  • Automatic speech recognition (ASR) has been successfully applied to many real human computer interaction (HCI) applications; however, its performance tends to be significantly decreased under noisy environments. The invention of audio visual speech recognition (AVSR) using an acoustic signal and lip motion has recently attracted more attention due to its noise-robustness characteristic. In this paper, we describe our novel integration scheme for AVSR based on a late integration approach. Firstly, we introduce the robust reliability measurement for audio and visual modalities using model based information and signal based information. The model based sources measure the confusability of vocabulary while the signal is used to estimate the noise level. Secondly, the output probabilities of audio and visual speech recognizers are normalized respectively before applying the final integration step using normalized output space and estimated weights. We evaluate the performance of our proposed method via Korean isolated word recognition system. The experimental results demonstrate the effectiveness and feasibility of our proposed system compared to the conventional systems.

음성 통계 모형에 따른 음성 왜곡량 감소를 위한 비선형 음성강조법 (Nonlinear Speech Enhancement Method for Reducing the Amount of Speech Distortion According to Speech Statistics Model)

  • 최재승
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.465-470
    • /
    • 2021
  • 잡음이 존재하는 실제 환경에서 음성인식을 실시하는 경우에 음성인식의 성능 열화 및 음성의 품질이 저화되지 않는 강건한 음성인식 기술이 필요하다. 이러한 음성인식 기술을 개발함으로써 사람의 음성 스펙트럼과 유사한 잡음 환경에서도 안정되고 높은 음성인식률이 실현되는 어플리케이션이 요구된다. 따라서 본 논문에서는 최소 평균 제곱의 오차를 기반으로 한 단시간 스펙트럼 진폭 방법인 MMSA-STSA 추정 알고리즘에 기초한 잡음억압을 처리하는 음성강조 알고리즘을 제안한다. 이 알고리즘은 단일 채널 입력에 기초한 효과적인 비선형 음성강조 알고리즘이며, 높은 잡음억제 성능을 가지고 있으며 음성의 통계적인 모델에 기초하여 음성의 왜곡량을 줄이는 기법이다. 본 실험에서는 MMSA-STSA 추정 알고리즘의 유효성을 확인하기 위하여 입력 음성파형과 출력 음성파형을 비교하여 제안한 알고리즘의 효과를 확인한다.

음성 개선 기반의 모델 보상 기법을 이용한 강인한 잡음 음성 인식 (A Noise Robust Speech Recognition Method Using Model Compensation Based on Speech Enhancement)

  • 신광호;정호열;정현열
    • 한국음향학회지
    • /
    • 제27권4호
    • /
    • pp.191-199
    • /
    • 2008
  • 본 논문에서는 잡음 환경하의 음성 인식을 위해 전처리 단계에서 Mel-warped Wiener Filtering (MWF) 기법을 이용하여 입력 음성을 개선하고 후처리 단계에서 PMC (Parallel Model Combination) 기법을 이용하여 인식 모델을 보상하는 MWF-PMC잡음 처리 기법을 제안한다. PMC 기법은 전처리 단계에서 개선된 음성의 묵음 구간으로부터 잔류 잡음을 취하여 깨끗한 음성을 이용하여 작성한 인식 모델을 보상함으로써 잡음 환경하의 음성 인식 성능을 향상시킬 수 있다. 인식 실험을 위한 음성 데이터는 국어공학연구소 (KLE)에서 작성한 PBW (Phoneme Balanced Words) 452 단어 음성 데이터를 8 kHz로 다운 샘플링한 후 Subway, Car 및 Exhibition 잡음을 5단계의 신호 대 잡음비 (SNR)를 0, 5, 10, 15, 2003로 부가하여 구성하였다. 인식 실험 결과, 본 논문에서 제안한 MWF-PMC 기법이 기존의 결합된 기법보다 전반적으로 향상된 인식 성능을 얻어 그 유효성을 확인할 수 있었다.

Energy Feature Normalization for Robust Speech Recognition in Noisy Environments

  • Lee, Yoon-Jae;Ko, Han-Seok
    • 음성과학
    • /
    • 제13권1호
    • /
    • pp.129-139
    • /
    • 2006
  • In this paper, we propose two effective energy feature normalization methods for robust speech recognition in noisy environments. In the first method, we estimate the noise energy and remove it from the noisy speech energy. In the second method, we propose a modified algorithm for the Log-energy Dynamic Range Normalization (ERN) method. In the ERN method, the log energy of the training data in a clean environment is transformed into the log energy in noisy environments. If the minimum log energy of the test data is outside of a pre-defined range, the log energy of the test data is also transformed. Since the ERN method has several weaknesses, we propose a modified transform scheme designed to reduce the residual mismatch that it produces. In the evaluation conducted on the Aurora2.0 database, we obtained a significant performance improvement.

  • PDF

Adaptive Band Selection for Robust Speech Detection In Noisy Environments

  • Ji Mikyong;Suh Youngjoo;Kim Hoirin
    • 대한음성학회지:말소리
    • /
    • 제50호
    • /
    • pp.85-97
    • /
    • 2004
  • One of the important problems in speech recognition is to accurately detect the existence of speech in adverse environments. The speech detection problem becomes severer when recognition systems are used over the telephone network, especially in a wireless network and a noisy environment. In this paper, we propose a robust speech detection algorithm, which detects speech boundaries accurately by selecting useful bands adaptively to noisy environments. The bands where noises are mainly distributed, so called, noise-centric bands are introduced. In this paper, we compare two different speech detection algorithms with the proposed algorithm, and evaluate them on noisy environments. The experimental results show the excellence of the proposed speech detection algorithm.

  • PDF

잡음음성 음향모델 적응에 기반한 잡음에 강인한 음성인식 (Noise Robust Speech Recognition Based on Noisy Speech Acoustic Model Adaptation)

  • 정용주
    • 말소리와 음성과학
    • /
    • 제6권2호
    • /
    • pp.29-34
    • /
    • 2014
  • In the Vector Taylor Series (VTS)-based noisy speech recognition methods, Hidden Markov Models (HMM) are usually trained with clean speech. However, better performance is expected by training the HMM with noisy speech. In a previous study, we could find that Minimum Mean Square Error (MMSE) estimation of the training noisy speech in the log-spectrum domain produce improved recognition results, but since the proposed algorithm was done in the log-spectrum domain, it could not be used for the HMM adaptation. In this paper, we modify the previous algorithm to derive a novel mathematical relation between test and training noisy speech in the cepstrum domain and the mean and covariance of the Multi-condition TRaining (MTR) trained noisy speech HMM are adapted. In the noisy speech recognition experiments on the Aurora 2 database, the proposed method produced 10.6% of relative improvement in Word Error Rates (WERs) over the MTR method while the previous MMSE estimation of the training noisy speech produced 4.3% of relative improvement, which shows the superiority of the proposed method.

고차통계 정규화를 이용한 강인한 음성인식 (Robust Speech Recognition Using Real-Time Higher Order Statistics Normalization)

  • 정주현;송화전;김형순
    • 대한음성학회지:말소리
    • /
    • 제54호
    • /
    • pp.63-72
    • /
    • 2005
  • The performance of speech recognition system is degraded by the mismatch between training and test environments. Many studies have been presented to compensate for noise components in the cepstral domain. Recently, higher order cepstral moment normalization method has been introduced to improve recognition accuracy. In this paper, we present real-time high order moment normalization method with post-processing smoothing filter to reduce the parameter estimation error in higher order moment computation. In experiments using Aurora2 database, we obtained error rate reduction of 44.7% with proposed algorithm in comparison with baseline system.

  • PDF

연속 음성 인식 향상을 위해 LMS 알고리즘을 이용한 CHMM 모델링 (CHMM Modeling using LMS Algorithm for Continuous Speech Recognition Improvement)

  • 안찬식;오상엽
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.377-382
    • /
    • 2012
  • 본 논문은 반향 제거 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인한 연속 음성 인식 모델인 CHMM 모델을 구성하는 방법을 제안하였다. 변화하는 반향 잡음에 적응하고 연속 음성 인식 성능 향상을 위한 반향 잡음 제거 평균 예측 LMS 알고리즘을 이용하여 CHMM 모델을 구성하였다. 제안한 알고리즘에 의해 구성된 CHMM 모델에 대하여 연속 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 1.93dB이 향상되었고 연속 음성의 인식률은 2.1% 향상되었다.

잡음에 강인한 음성 인식을 위한 환경 파라미터 보상에 관한 연구 (A Study on Environment Parameter Compensation Method for Robust Speech Recognition)

  • 홍미정;이호웅
    • 한국ITS학회 논문지
    • /
    • 제5권2호
    • /
    • pp.1-10
    • /
    • 2006
  • 본 논문에서는 강인한 음성인식 기술의 하나인 모델 파라미터 변환 기법 중 Carnegie Mellon University(1996)에서 Moreno가 제안한 최신 VTS(Vector Taylor Series) 알고리즘을 이용하여 주어진 잡음 환경에서 실험하였다. 이러한 VTS 알고리즘의 성능평가를 위해서 기존의 잡음 처리 방법 중 CMN(Cepstral Mean Normalization) 기법을 도입하였으며, 데시벨별로 설정한 백색 잡음과 거리잡음을 환경잡음으로 주어졌을 때의 인식률을 비교하였다. 또한 기존 Moreno가 제안한 실험환경의 인식 결과와 본 논문에서의 실험결과를 비교 분석하였다. 인식 알고리즘으로는 실시간 구현이 가능한 이산HMM(Hidden Markov Model)을 사용하였다.

  • PDF