In this paper we apply PMC (parallel model combination) to speech recognition system online. As a representative of model based noise compensation techniques, PMC compensates environmental mismatch by combining pretrained clean speech models and real-time estimated noise information. This is very effective approach for compensating extreme environmental mismatch but is inadequate to use in on-line system for heavy computational cost. To reduce the computational cost and to apply PMC online, we use a noise masking effect - the energy in a frequency band is dominated either by clean speech energy or by noise energy - in the process of model compensation. Experiments on artificially produced noisy speech data confirm that the proposed technique is fast and effective for the on-line model compensation.
Automatic speech recognition (ASR) has been successfully applied to many real human computer interaction (HCI) applications; however, its performance tends to be significantly decreased under noisy environments. The invention of audio visual speech recognition (AVSR) using an acoustic signal and lip motion has recently attracted more attention due to its noise-robustness characteristic. In this paper, we describe our novel integration scheme for AVSR based on a late integration approach. Firstly, we introduce the robust reliability measurement for audio and visual modalities using model based information and signal based information. The model based sources measure the confusability of vocabulary while the signal is used to estimate the noise level. Secondly, the output probabilities of audio and visual speech recognizers are normalized respectively before applying the final integration step using normalized output space and estimated weights. We evaluate the performance of our proposed method via Korean isolated word recognition system. The experimental results demonstrate the effectiveness and feasibility of our proposed system compared to the conventional systems.
잡음이 존재하는 실제 환경에서 음성인식을 실시하는 경우에 음성인식의 성능 열화 및 음성의 품질이 저화되지 않는 강건한 음성인식 기술이 필요하다. 이러한 음성인식 기술을 개발함으로써 사람의 음성 스펙트럼과 유사한 잡음 환경에서도 안정되고 높은 음성인식률이 실현되는 어플리케이션이 요구된다. 따라서 본 논문에서는 최소 평균 제곱의 오차를 기반으로 한 단시간 스펙트럼 진폭 방법인 MMSA-STSA 추정 알고리즘에 기초한 잡음억압을 처리하는 음성강조 알고리즘을 제안한다. 이 알고리즘은 단일 채널 입력에 기초한 효과적인 비선형 음성강조 알고리즘이며, 높은 잡음억제 성능을 가지고 있으며 음성의 통계적인 모델에 기초하여 음성의 왜곡량을 줄이는 기법이다. 본 실험에서는 MMSA-STSA 추정 알고리즘의 유효성을 확인하기 위하여 입력 음성파형과 출력 음성파형을 비교하여 제안한 알고리즘의 효과를 확인한다.
본 논문에서는 잡음 환경하의 음성 인식을 위해 전처리 단계에서 Mel-warped Wiener Filtering (MWF) 기법을 이용하여 입력 음성을 개선하고 후처리 단계에서 PMC (Parallel Model Combination) 기법을 이용하여 인식 모델을 보상하는 MWF-PMC잡음 처리 기법을 제안한다. PMC 기법은 전처리 단계에서 개선된 음성의 묵음 구간으로부터 잔류 잡음을 취하여 깨끗한 음성을 이용하여 작성한 인식 모델을 보상함으로써 잡음 환경하의 음성 인식 성능을 향상시킬 수 있다. 인식 실험을 위한 음성 데이터는 국어공학연구소 (KLE)에서 작성한 PBW (Phoneme Balanced Words) 452 단어 음성 데이터를 8 kHz로 다운 샘플링한 후 Subway, Car 및 Exhibition 잡음을 5단계의 신호 대 잡음비 (SNR)를 0, 5, 10, 15, 2003로 부가하여 구성하였다. 인식 실험 결과, 본 논문에서 제안한 MWF-PMC 기법이 기존의 결합된 기법보다 전반적으로 향상된 인식 성능을 얻어 그 유효성을 확인할 수 있었다.
In this paper, we propose two effective energy feature normalization methods for robust speech recognition in noisy environments. In the first method, we estimate the noise energy and remove it from the noisy speech energy. In the second method, we propose a modified algorithm for the Log-energy Dynamic Range Normalization (ERN) method. In the ERN method, the log energy of the training data in a clean environment is transformed into the log energy in noisy environments. If the minimum log energy of the test data is outside of a pre-defined range, the log energy of the test data is also transformed. Since the ERN method has several weaknesses, we propose a modified transform scheme designed to reduce the residual mismatch that it produces. In the evaluation conducted on the Aurora2.0 database, we obtained a significant performance improvement.
One of the important problems in speech recognition is to accurately detect the existence of speech in adverse environments. The speech detection problem becomes severer when recognition systems are used over the telephone network, especially in a wireless network and a noisy environment. In this paper, we propose a robust speech detection algorithm, which detects speech boundaries accurately by selecting useful bands adaptively to noisy environments. The bands where noises are mainly distributed, so called, noise-centric bands are introduced. In this paper, we compare two different speech detection algorithms with the proposed algorithm, and evaluate them on noisy environments. The experimental results show the excellence of the proposed speech detection algorithm.
In the Vector Taylor Series (VTS)-based noisy speech recognition methods, Hidden Markov Models (HMM) are usually trained with clean speech. However, better performance is expected by training the HMM with noisy speech. In a previous study, we could find that Minimum Mean Square Error (MMSE) estimation of the training noisy speech in the log-spectrum domain produce improved recognition results, but since the proposed algorithm was done in the log-spectrum domain, it could not be used for the HMM adaptation. In this paper, we modify the previous algorithm to derive a novel mathematical relation between test and training noisy speech in the cepstrum domain and the mean and covariance of the Multi-condition TRaining (MTR) trained noisy speech HMM are adapted. In the noisy speech recognition experiments on the Aurora 2 database, the proposed method produced 10.6% of relative improvement in Word Error Rates (WERs) over the MTR method while the previous MMSE estimation of the training noisy speech produced 4.3% of relative improvement, which shows the superiority of the proposed method.
The performance of speech recognition system is degraded by the mismatch between training and test environments. Many studies have been presented to compensate for noise components in the cepstral domain. Recently, higher order cepstral moment normalization method has been introduced to improve recognition accuracy. In this paper, we present real-time high order moment normalization method with post-processing smoothing filter to reduce the parameter estimation error in higher order moment computation. In experiments using Aurora2 database, we obtained error rate reduction of 44.7% with proposed algorithm in comparison with baseline system.
본 논문은 반향 제거 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인한 연속 음성 인식 모델인 CHMM 모델을 구성하는 방법을 제안하였다. 변화하는 반향 잡음에 적응하고 연속 음성 인식 성능 향상을 위한 반향 잡음 제거 평균 예측 LMS 알고리즘을 이용하여 CHMM 모델을 구성하였다. 제안한 알고리즘에 의해 구성된 CHMM 모델에 대하여 연속 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 1.93dB이 향상되었고 연속 음성의 인식률은 2.1% 향상되었다.
본 논문에서는 강인한 음성인식 기술의 하나인 모델 파라미터 변환 기법 중 Carnegie Mellon University(1996)에서 Moreno가 제안한 최신 VTS(Vector Taylor Series) 알고리즘을 이용하여 주어진 잡음 환경에서 실험하였다. 이러한 VTS 알고리즘의 성능평가를 위해서 기존의 잡음 처리 방법 중 CMN(Cepstral Mean Normalization) 기법을 도입하였으며, 데시벨별로 설정한 백색 잡음과 거리잡음을 환경잡음으로 주어졌을 때의 인식률을 비교하였다. 또한 기존 Moreno가 제안한 실험환경의 인식 결과와 본 논문에서의 실험결과를 비교 분석하였다. 인식 알고리즘으로는 실시간 구현이 가능한 이산HMM(Hidden Markov Model)을 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.