• 제목/요약/키워드: Noise robust speech recognition

검색결과 134건 처리시간 0.023초

전화망에서의 음성인식을 위한 전처리 연구 (Front-End Processing for Speech Recognition in the Telephone Network)

  • 전원석;신원호;양태영;김원구;윤대희
    • 한국음향학회지
    • /
    • 제16권4호
    • /
    • pp.57-63
    • /
    • 1997
  • 본 논문에서는 다양한 전화선 채널에서 수집된 한국통신(KT)의 데이터베이스를 이용하여 인식 시스템의 성능을 향상시키기 위한 효율적인 특징벡터 및 전처리방법을 연구하였다. 먼저 잡음 및 주변 환경 변화에 강인한 갓으로 알려져 있는 특징벡터들을 이용한 인식 성능을 비교하고, 가중 켑스트랄 거리측정 방법을 이용하여 인식시스템의 성능 향상을 검증하였다. 실험 결과, KT의 인식 시스템에서 이용하는 LPC 켑스트럼의 경우에 비하여 PLP(Perceptual Linear Prediction)과 MFCC)Mel Frequency Cepstral Coefficient)등에 대하여 인식률이 향상되었다. 켑스트럼간의 거리측정에 있어서는 RPS(Root Power Sums)와 BPL(Band Pass Lifter)과 같은 가중 켑스트랄 거리측정 함수들이 인식성능 향상에 도움을 주었다. 스펙트럼 차감법(Spectral Subtraction)의 적용은 왜곡에 의한 효과가 커서 인식률이 저하되었지만, RASTA(RelAtive SpecTrAl) 처리방법, CMS(Cepstral Mean Subtraction), SBR(Signal Bias Removal)의 적용시에는 인식 성능 향상을 보였다. 특히, CMS 방법은 간편하면서도 높은 인식 성능 향상을 보였다. 마지막으로, CMS의 실시간 구현을 위한 방법들의 인식 성능을 비교하고, 인식 성능 저하를 막기 위한 개선책을 제시하였다.

  • PDF

스마트 FA를 위한 음성인식 지능로봇제어에 관한 연구 (A Study On Intelligent Robot Control Based On Voice Recognition For Smart FA)

  • 심현석;김민성;최민혁;배호영;김희진;김두범;한성현
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.87-93
    • /
    • 2018
  • This Study Propose A New Approach To Impliment A Intelligent Robot Control Based on Voice Recognition For Smart Factory Automation Since human usually communicate each other by voices, it is very convenient if voice is used to command humanoid robots or the other type robot system. A lot of researches has been performed about voice recognition systems for this purpose. Hidden Markov Model is a robust statistical methodology for efficient voice recognition in noise environments. It has being tested in a wide range of applications. A prediction approach traditionally applied for the text compression and coding, Prediction by Partial Matching which is a finite-context statistical modeling technique and can predict the next characters based on the context, has shown a great potential in developing novel solutions to several language modeling problems in speech recognition. It was illustrated the reliability of voice recognition by experiments for humanoid robot with 26 joints as the purpose of application to the manufacturing process.

차량용 음성인식을 위한 주변잡음에 강건한 브라인드 음원분리 (Robust Blind Source Separation to Noisy Environment For Speech Recognition in Car)

  • 김현태;박장식
    • 한국콘텐츠학회논문지
    • /
    • 제6권12호
    • /
    • pp.89-95
    • /
    • 2006
  • 독립성분분석을 사용한 암묵신호분리의 성능은 잔향이 존재하는 환경에서 잔류 누설 성분 (cross-talk) 때문에 현저히 저하된다. 본 논문에서는 잔류 누설 성분을 제거하기 위한 후처리 방법을 제안한다. 제안하는 방법은 주파수 영역에서의 변형된 NLMS(normalized least mean square) 필터를 사용하며 필터의 역할은 잔류 누설 성분을 유발하는 누설 경로를 추정하는 데 있다. 특정 채널에서 잔류하는 누설 성분은 상대 채널의 직접 성분에 해당되므로 관측되는 상대 채널의 입력신호를 이용하여 누설 경로를 추정할 수 있다. 변형된 NLMS 필터는 필터 입력 신호의 전력과 추정 오차 신호의 전력을 함께 고려하여 정규화한다. 특정 채널의 직접 신호 성분은 적응 필터에서 잡음처럼 동작하여 결국 적응필터가 오조정되기 때문에 제안하는 방법을 통해 적응필터의 오조정을 방지할 수 있다. 음성 신호를 사용한 컴퓨터 시뮬레이션 결과를 통해 제안하는 방법이 후처리를 사용하지 않은 경우에 비해 잡음 제거 성능(NRR)이 약 3dB 정도 개선되는 것을 확인 할 수 있다.

  • PDF

화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델 (RPCA-GMM for Speaker Identification)

  • 이윤정;서창우;강상기;이기용
    • 한국음향학회지
    • /
    • 제22권7호
    • /
    • pp.519-527
    • /
    • 2003
  • 음성신호는 주변 잡음과 화자의 발성 패턴 변화, 음성 검출 오류에서 생기는 이상치(outlier)에 많은 영향을 받고 있다. 이러한 음성 신호를 이용하여 화자인식에 이용할 경우 인식률이 저하된다. 본 논문에서는 화자식별 (speaker identification)에서 학습 특징 벡터의 이상치와 고차원 문제를 해결하기 위하여 M-추정을 이용한 강인한 주성분 분석 가우시안 혼합모델 (Robust Principal Component Analysis-Gaussian Mixture Model)방법을 제안하였다. 제안된 방법은 먼저, 특징 벡터에 이상치가 존재할 경우 M-추정에 의하여 강인한 공분산 행렬을 재추정하여 얻어진 고유벡터로부터 변환 행렬을 구하여 감소된 차원을 갖는 새로운 특징벡터를 구한다. 여기에서 얻은 선형변환된 특징벡터로부터 화자의 가우시안 혼합 모델을 구한다. 제안된 방법의 성능을 검증하기 위하여 화자식별 실험을 하였다. 실험은 전형적인 가우시안 혼합 모델 방법과 주성분 분석법, 제안된 방법을 비교 분석하였다. 이상치가 2%씩 증가할 때마다 가우시안 혼합모델 방법과 주성분 분석법은 각각 0.65%, 0.55%씩 화자식별 성능이 저하되었지만, 제안된 방법은 0.03%정도 감소하였으므로 이상치에 더욱 강인함을 알 수 있다.