• Title/Summary/Keyword: Noise power estimation

Search Result 311, Processing Time 0.027 seconds

Speech Enhancement Based on Modified IMCRA Using Spectral Minima Tracking with Weighted Subband Selection (서브밴드 가중치를 적용한 스펙트럼 최소값 추적을 이용하는 수정된 IMCRA 기반의 음성 향상 기법)

  • Park, Yun-Sik;Park, Gyu-Seok;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.89-97
    • /
    • 2012
  • In this paper, we propose a novel approach to noise power estimation for speech enhancement in noisy environments. The method based on IMCRA (improved minima controlled recursive averaging) which is widely used in speech enhancement utilizes a rough VAD (voice activity detection) algorithm which excludes speech components during speech periods in order to improves the performance of the noise power estimation by reducing the speech distortion caused by the conventional algorithm based on the minimum power spectrum derived from the noisy speech. However, since the VAD algorithm is not sufficient to distinguish speech from noise at non-stationary noise and low SNRs (signal-to-noise ratios), the speech distortion resulted from the minimum tracking during speech periods still remained. In the proposed method, minimum power estimate obtained by IMCRA is modified by SMT (spectral minima tracking) to reduce the speech distortion derived from the bias of the estimated minimum power. In addition, in order to effectively estimate minimum power by considering the distribution characteristic of the speech and noise spectrum, the presented method combines the minimum estimates provided by IMCRA and SMT depending on the weighting factor based on the subband. Performance of the proposed algorithm is evaluated by subjective and objective quality tests under various environments and better results compared with the conventional method are obtained.

A study on A-pillar & wiper wind noise estimation using response surface methodology at design stage (반응면 기법을 이용한 A필라/와이퍼 풍절음 예측 연구)

  • Rim, Sungnam;Shin, Seongryong;Shin, Hyunsu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.292-299
    • /
    • 2018
  • The vehicle exterior design is the main parameter of aerodynamic wind noise, but the modification of it is nearly impossible at a proto-type stage. Therefore, it is very important to verify exterior design and estimate the correct wind noise level at the early vehicle design stages. The numerical simulations of aerodynamic wind noises around A-pillar and wiper were developed for specific vehicle exterior designs, but could not be directly used for the discussions with designers because these need complex modeling and simulation process. This study proposes new approach to A-pillar and wiper wind noise estimation at design stage using response surface methodology of modeFRONTIER, of which database is composed of PowerFLOW simulation, PowerCLAY modeling, SEA-Baced (Statistical Energy Analysis-Based) interior noise simulation, and turbulent acoustic power simulation. New design parameters are defined and their contributions are analyzed. A state-of-the-art, easy and reliable CAT (Computer Aided Test) tool for A-pillar and wiper wind noise are acquired from this study, which shows high usefulness in car development.

A Study on the Gap Estimation Circuit Design of the Magnetic Levitation System (자기 부상계의 변위추정 회로설계에 관한 연구)

  • Kim, C.H.;Ha, Y.W.;Sim, S.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.144-153
    • /
    • 1997
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of gap sensors brings out the increase of the number of troublesome, and the decrease of the control performance because of the dislocation between the measurement point and the control point. This paper presents the design of the gap estimation circuit for the sensorless method proposed by authors in the magnetic levitation system. We made the gap estimation circuit which was composed of both the superposition circuit and the measuring circuit. And we investigated the validity of the usefulness of the proposed sensorless method in the magnetic levitation system through results of actual experiment.

  • PDF

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

Effects of Rotational Stiffness of Isolators on Vibration Power Transmission in Vibration Isolation Systems over High Frequency Range (진동 절연계에서 절연요소 회전강성계수가 고주파수 대역 진동파워 전달에 미치는 영향)

  • 김진성;이호정;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.375-383
    • /
    • 2003
  • For a performance analysis of vibration isolation systems, the concept of vibration power flow can be employed preferably when noise radiated from the supporting structure with finite impedances is of interest. The idea is basically simple to understand and formulas for precise estimation of the vibration power are easy to derive. However, It is often required to simplify the process of experimentation under several assumptions due to instrumental limitations. For an example, rotational degree of freedom has not been well treated in bending vibrations of beam or plate-like structures. Yet, several recent studies showed that the moments and rotations play an important role in power transmission and should be taken into consideration carefully as the frequency range of interest goes to audibly high. Therefore, it is readily agreed that reduction of the noise radiation over the high frequency range can be effectively accomplished by adjusting the rotational stiffness of the isolator without changing the vibration isolator efficiency in low frequency range relevant to the translational stiffness of the isolator In this paper, the vibration power flow approach is applied to an AC motor installed on a finite plate in order to illustrate the contribution of the rotational vibration power to the total vibration power transmission. The effects of rotational stiffness of the isolator on the vibration power transmission are investigated by inserting various shapes of Isolators with different rotational stiffness but with $ame translational stiffness between the motor and the plate. The resultant noise radiation from the plate is presented to verify the proposed approach.

SOC Estimation of Flooded Lead Acid Battery Using an Adaptive Unscented Kalman Filter (적응형 Unscented 칼만필터를 이용한 플러디드 납축전지의 SOC 추정)

  • Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.59-60
    • /
    • 2016
  • Flooded lead acid batteries are still very popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation is of great importance for a flooded lead acid battery to ensure its safe working and to prevent it from over-charging or over-discharging. Different types of Kalman Filters are widely used for SOC estimation of batteries. The values of process and measurement noise covariance of a filter are usually calculated by trial and error method and taken as constant throughout the estimation process. While in practical cases, these values can vary as well depending upon the dynamics of the system. Therefore an Adaptive Unscented Kalman Filter (AUKF) is introduced in which the values of the process and measurement noise covariance are updated in each iteration based on the residual system error. A comparison of traditional and Adaptive Unscented Kalman Filter is presented in the paper. The results show that SOC estimation error by the proposed method is further reduced by 3 % as compared to traditional Unscented Kalman Filter.

  • PDF

Distance Attenuation of Bending Wave to Analyze the Loose Parts Impact Signal (금속파편 충격 신호분석을 위한 굽힘파의 거리 감쇠)

  • Lee, Jeong-Han;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.594-601
    • /
    • 2016
  • Mass estimation analysis of loose-parts in pressure vessel is necessary for the structural integrity assessment of pressure boundary in nuclear power plants. Mass of loose-parts can be generally estimated from the peak values and the center frequency of impact signals. Magnitude of impact signals is, however, inevitably attenuated according to the traveling distance of the signals and depending on the frequencies. Attenuation rate must be therefore carefully compensated for the precise estimation of loose-part mass. This paper proposes a new compensation method for the attenuation rate based on Bessel function instead of Hankel function in conventional method which has a limitation of usage in near the impact location. It was verified that the suggested compensating equation based on the Bessel function can be applied to the attenuation rate calculation without any limitation.

Pre-filtering and Location Estimation of a Loose Part

  • Kim, Jung-Soo;Kim, Tae-Wan;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.522-522
    • /
    • 2000
  • In this paper, two pre-filtering techniques are presented for accurately estimating the impact location of a loose part. The reason why a pre-filterng technique Is necessary in a Loose Part Monitoring System is that the effects of background noise on the signal to noise ratio (SNR) can be reduced considerably resulting in improved estimation accuracy. The first method is to take d moving average operation in the time domain. The second one is to adopt band-pass filters designed in the frequency domain such as a Butterworth filter, Chebyshev filter I & II and an Elliptic Filter. To show the effectiveness, the impact test data (signals) from the YGN3 power plant are first preprocessed and then used to estimate the loose pan impact position. Resultantly. we observed that SNR is much improved and the average estimation error is below 7.5%.

  • PDF

Analytical Estimation of Power Generation from Dynamic Structure With Piezoelectric Element (압전재료가 부착된 동적 구조물로부터 발생되는 전기력의 해석적인 평가)

  • Oh, Jae-Eung;Yoon, Ji-Hyeon;Sim, Hyoun-Jin;Lee, You-Yub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.263-263
    • /
    • 2007
  • In the future, self-contained sensors and processing units will need on-board, renewable power supplies to be truly autonomous. One way of supplying such power is through energy harvesting, processes by which ambient forms of energy are converted into electricity. One energy harvesting technique involves converting kinetic energy, in the form of vibrations, into electrical energy through the use of piezoelectric materials. Researchers are currently investigating how piezoelectric materials can be used to harvest power. This study examines the use of auxiliary structures, consisting of a mechanical fixture and a lead zirconate/lead titanate (PZT) piezoelectric element, which can be attached to any boundary conditions vibrating beam of the any boundary conditions. Adjusting various boundary conditions of these structures can maximize the strain induced in the attached PZT element and improve power output.

  • PDF

Estimation of Total Acoustic Radiation Power of Submerged Circular Cylindrical Structure Using Surface Vibration Velocity (접수 원통형 구조물의 표면 진동속도를 이용한 총 방사음향파워 계산)

  • Han, Seungjin;Lee, Jongju;Kang, Myunghwan;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.236-239
    • /
    • 2014
  • Most naval underwater weapon system can be simplified to a circular cylindrical structure which has vibrating machineries inside. In order to predict efficiently the total acoustic radiation power of cylindrical structure, surface velocity is measured and radiation efficiency of surface element is calculated. Then, they are substituted to the surface pressure in the simplified Helmholtz integral equation which assumes acoustic far-field and plane-wave approximation at the surface. Surface velocity and total acoustic radiation power for a submerged cylinder are measured in water-tank. In this example, it is found that total acoustic power output obtained from the prediction is in good agreement with that of measurement in mid-high frequency range.

  • PDF