• Title/Summary/Keyword: Noise floor level

Search Result 197, Processing Time 0.029 seconds

A Study on the Floor Impact Sound Insulation Characteristics of Floor Coverings (바닥마감재에 의한 바닥충격음 차음특성 연구)

  • Gi, No-Gab;Kwon, Hyun-Jong;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.368.2-368
    • /
    • 2002
  • It is increasing the interest on the comfortable dwelling environment, while sound insulation performance of materials and elements used in building is falling down as they become thicker and lighter Therefore, sound insulation performance in building has become the most important factor determining the level of housing, especially for apartment that has common wall and floor with next neighbors. (omitted)

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Evaluation of Floor Impact Sound by Floor Coverings in Standard Test Building (표준시험동에서 바닥마감재에 따른 바닥충격음 특성평가)

  • Kim, Hak-Cheon;Kim, Yong-Gil;Kim, Sang-Chul;Lee, Hyun-Lyul;Cho, Hyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.439-440
    • /
    • 2008
  • Five floor coverings were tested with three different types of floor structures in the standard test building in order to evaluate the effectiveness of the floor impact sound reduction. The level of floor impact sound reduction is influenced by not only the types of floor coverings but interrelationship between the floor coverings and floor structures. From the tests, it was found that floor coverings were effective in reducing the floor impact sound using the light impact source. In addition, proper mixtures of the floor structure and the floor covering have shown effectiveness to a certain extent in reducing the floor impact sound using the heavy impact source.

  • PDF

Criteria for multiple noises in residential buildings uslng combined rating system (공동주택 생활소음의 통합 평가등급 설정)

  • Ryu, Jong-Kwan;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.367-371
    • /
    • 2005
  • Social noise survey on multiple residential noises such as nut impact, air-borne, bathroom, drainage and traffic noises was conducted to investigate major variables affecting the overall satisfaction for noise environment The effect of individual noise perception on the evaluation of the overall noise environment was investigated through a questionnaire survey on annoyance, disturbance and noise sensitivity. Auditory experiments was also undertaken to determine noise level according to the percent of satisfaction for individual noise source. As a result of survey, it was found that satisfaction for floor impact noise most greatly affects the overall satisfaction for noise environment and annoyance most greatly affects the satisfaction for individual noise sources. Result of auditory experiment showed that the noise level of floor impact noise by bang machine, airborne, drainage and traffic noise corresponding to 50% satisfaction is 44dB($L_{i,Fmax,AW}$) and 40dBA, respectively.

  • PDF

Investigation for the Characters of Human Perception Level according to Acceleration Value Parameters (가속도 크기 변수에 따른 수직진동에 대한 인지수준 고찰)

  • Lee, MinJung;Han, SangWhan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.731-740
    • /
    • 2014
  • Occupants induced floor vertical vibrations may cause other occupant's annoyance and lead to social loss. To help control such floor vibrations, several criteria have been developed mostly based on human perception tests and floor vibration tests. Floor vibration is evaluated by comparison with criteria and vibration parameters of subject floor, such as frequency, damping ratio, acceleration value, vibration duration time and occurrence frequency. Three acceleration value parameters are used in criteria; peak acceleration, rms acceleration and VDV, when a floor vibration serviceability is evaluated. Meanwhile rms acceleration and peak acceleration are adopted as vibration limit value in criteria and researches of human perception for vibration. Occupants induced floor vibration is transient rather than steady state. However, rms acceleration is not reliable parameter for evaluating transient vibration. The objective of this study is to investigate the characters of human perception level according to acceleration value parameters for vibration induced by heel impacts and walking activities.

Evaluation of heavy-weight impact sounds generated by impact ball through classification (주파수 특성 분류를 통한 임팩트 볼 중량충격음의 주관적 평가)

  • Kim, Jae-Ho;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1142-1146
    • /
    • 2007
  • In this studies, subjective evaluation of heavy-weight floor impact sound through classification was conducted. Heavyweight impact sounds generated by an impact ball were recorded through dummy heads in apartment buildings. The recordings were classified according to the frequency characteristics of the floor impact sounds which are influenced by the floor structure with different boundary conditions and composite materials. The characteristics of the floor impact noise were investigated by paired comparison tests and semantic differential tests. Sound sources for auditory experiment were selected based on the actual noise levels with perceptual level differences. The results showed that roughness and fluctuation strength as well as loudness of the heavy-weight impact noise had a major effect on annoyance.

  • PDF

Study on the Vibration Reduction Characteristics of Floating Floors Used in Railway Vehicles (철도차량에서 사용하는 부유상구조의 진동절연특성에 관한 연구)

  • Woo, Kwan-Je;Park, Hee-Jun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.305-309
    • /
    • 2006
  • In this paper vibration reduction characteristics of floating floors used in railway vehicles are studied. Vibration reduction characteristics are compared through a series of tests for elastically-coupled floor and rigidly-coupled floor. It was found that elastically-coupled floor has larger vibration reduction amount than rigidly-coupled floor. Around the fundamental natural frequency, however, elastic floor has poor vibration reduction effect than rigid floor. Measures to reduce structure-borne noise are also discussed based on the test results. Structure-borne noise for running railway vehicles cannot be reduced by an effort to deviate resonance between natural frequency of floors and major exciting forces. Instead, reducing vibration level of top floor and using covers which have low sound radiation coefficient will be effective for reducing structure-borne noise.

  • PDF

Prediction of Floor Impact Sound by Measuring the Vibration Acceleration Level on the Interior Structures of Receiving Room in Apartment Buildings (수음실 내 구조체의 진동량 계측을 통한 바닥충격음레벨 예측)

  • 김명준;김흥식;김하근
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.3-9
    • /
    • 2003
  • In an apartment building, the impact sound from upstairs has been regarded as a main source of noise causing discontentment among occupants. To set the optimum design for sound insulation. it is nesessary to suggest the useful tools or technique that predict the floor impact sound. The purpose of this study is to investigate the applicability of the theory of sound radiation. We measured the vibration acceleration levels on the interior structures and predicted the sound pressure level of the room by using them. The result show that the predicted value, in general, were in good agreement with the measured values within 5∼10% in error rate.

Effects of the sound field characteristics of the receiving room on heavy-weight impact sound measurement generated by impact ball (임팩트 볼에 의한 중량충격음 측정에 있어서 수음실 음장특성의 영향)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeong, Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.622-625
    • /
    • 2006
  • This study is a fundamental investigation for standardization of the heavy-weight floor impact measuring method by the impact ball. The distribution chrematistics of floor impact sound level and reverberation time in a receiving room of the testing building for floor impact sound were measured with variations of number and arrangement of the sound-absorbing materials. Total 8 cases were investigated. The distribution of the floor impact sound level($L_{i,\;Fmax}$) was measured at 30 points with same intervals. The absorption coefficient of the room is 0.10 in case of installation of 6 absorbing materials and 0.02 in case of non-installation. The distribution shape of the impact sound pressure level was similar to the result of the bang machine driving at the measured frequency range. However, the overall reduction of the impact sound level investigated in the 125 to 500 Hz shows that the sound absorption characteristics of the receiving room actually affects the result of the heavy-weight impact measurement.

  • PDF