• Title/Summary/Keyword: Noise estimation

Search Result 1,985, Processing Time 0.026 seconds

A Comparison of Estimation Method for Population Exposed to Noise Using Noise Map (소음지도를 이용한 소음노출인구 산정방법별 비교)

  • Choi, Sung Kyu;Lee, Byung Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.802-808
    • /
    • 2014
  • The purpose of this study is to suggest efficient methods for estimating population exposed to noises by analyzing differences of population exposed to noises estimated by each method through comparing exposed population estimated by utilizing existing methods and those estimated by using census output areas reflecting the actual population information of each address. For population exposed to noises, the error of exposed population estimated by using the per capita living space turned out to be the biggest, and other estimation methods had no significant difference. For population exposed to excess noises, as a result of analyzing population estimated by each method based on census output areas, the error of the method using a grid noise map turned out to be the biggest. For the method to estimate population exposed to noises by using a noise map, the estimation methods using census output areas and total ground area are considered to be more rational than the grid noise map estimation method or the method to estimate the living space per capita.

Speech Recognition in Noisy Environrrents using Histogram-based Over-estimation (히스토그램 기반의 Over-estimation을 이용한 잡음환경에서의 음성인식)

  • 권영욱
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.262-266
    • /
    • 1998
  • In the speech recognition under the noisy environments, reducing the mismatch introduced between training and testing environments is an important issue, and spectral subtraction is widely used technique because of its simplicity and relatively good performance in noisy environments. In this paper, we introduced histogram method as a reliable noise estimationi approach for spectral subtraction. To deal with the problem of residual noise after spectral subtraction, we proposed a new ove-estimation technique based on distribution characteristics of histogram used for noise estimation. Since the proposed technique decides the degree of over-estimation adaptively according to the measured noise distribution, it can cope with the SNR variations effectively in compared with the conventional over-estimation technique.

  • PDF

A Spectral-spatial Cooperative Noise-evaluation Method for Hyperspectral Imaging

  • Zhou, Bing;Li, Bingxuan;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.530-539
    • /
    • 2020
  • Hyperspectral images feature a relatively narrow band and are easily disturbed by noise. Accurate estimation of the types and parameters of noise in hyperspectral images can provide prior knowledge for subsequent image processing. Existing hyperspectral-noise estimation methods often pay more attention to the use of spectral information while ignoring the spatial information of hyperspectral images. To evaluate the noise in hyperspectral images more accurately, we have proposed a spectral-spatial cooperative noise-evaluation method. First, the feature of spatial information was extracted by Gabor-filter and K-means algorithms. Then, texture edges were extracted by the Otsu threshold algorithm, and homogeneous image blocks were automatically separated. After that, signal and noise values for each pixel in homogeneous blocks were split with a multiple-linear-regression model. By experiments with both simulated and real hyperspectral images, the proposed method was demonstrated to be effective and accurate, and the composition of the hyperspectral image was verified.

Recognition for Noisy Speech by a Nonstationary AR HMM with Gain Adaptation Under Unknown Noise (잡음하에서 이득 적응을 가지는 비정상상태 자기회귀 은닉 마코프 모델에 의한 오염된 음성을 위한 인식)

  • 이기용;서창우;이주헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • In this paper, a gain-adapted speech recognition method in noise is developed in the time domain. Noise is assumed to be colored. To cope with the notable nonstationary nature of speech signals such as fricative, glides, liquids, and transition region between phones, the nonstationary autoregressive (NAR) hidden Markov model (HMM) is used. The nonstationary AR process is represented by using polynomial functions with a linear combination of M known basis functions. When only noisy signals are available, the estimation problem of noise inevitably arises. By using multiple Kalman filters, the estimation of noise model and gain contour of speech is performed. Noise estimation of the proposed method can eliminate noise from noisy speech to get an enhanced speech signal. Compared to the conventional ARHMM with noise estimation, our proposed NAR-HMM with noise estimation improves the recognition performance about 2-3%.

A Driving Study on Driver's Subjective Speed Estimation as a Function of the Vehicle Noise Types and Intensity (운전 중 실내 소음의 유형 및 강도에 따른 주관적 속도감에 관한 연구)

  • Daeho Gong;Junbum Lee;Jaesik Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.11 no.2
    • /
    • pp.31-46
    • /
    • 2005
  • The purpose of the present study was to investigate the effects of in-vehicle noise types and levels of intensity on drivers' driving speed estimation. Noise generated from the vehicle engine and musical sound sampled from the Korean pop were employed as the types of in-vehicle noise and their levels of intensity were systematically manipulated. In experiment 1 where the effect of the engine noise levels on speed estimation was observed, drivers showed the tendencies of driving faster than the targets speeds under lower noise intensity condition whereas driving slower under higher noise intensity condition. In experiment 2 where both musical sample and the engine noise were provided, drivers' subjective speed estimation was affected by the engine noise as revealed experiment 1, but not by musical sample. When the data from the both experiments were combined and analyzed, an interacting effect of engine noise levels and music sample levels was found: if the intensity of music sample was enough to overwhelm the engine noise, the drivers drove faster than lower engine noise level condition in the experiment 1. This result indicates that although the music sample is not the direct auditory cue of speed estimation as observed in the experiment 2, intense level of music sample can affect drivers' speed estimation when it is coupled with the lower engine noise level.

Efficient Noise Estimation for Speech Enhancement in Wavelet Packet Transform

  • Jung, Sung-Il;Yang, Sung-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.154-158
    • /
    • 2006
  • In this paper, we suggest a noise estimation method for speech enhancement in nonstationary noisy environments. The proposed method consists of the following two main processes. First, in order to receive fewer affect of variable signals, a best fitting regression line is used, which is obtained by applying a least squares method to coefficient magnitudes in a node with a uniform wavelet packet transform. Next, in order to update the noise estimation efficiently, a differential forgetting factor and a correlation coefficient per subband are used, where subband is employed for applying the weighted value according to the change of signals. In particular, this method has the ability to update the noise estimation by using the estimated noise at the previous frame only, without utilizing the statistical information of long past frames and explicit nonspeech frames by voice activity detector. In objective assessments, it was observed that the performance of the proposed method was better than that of the compared (minima controlled recursive averaging, weighted average) methods. Furthermore, the method showed a reliable result even at low SNR.

Non-Intrusive Speech Intelligibility Estimation Using Autoencoder Features with Background Noise Information

  • Jeong, Yue Ri;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.220-225
    • /
    • 2020
  • This paper investigates the non-intrusive speech intelligibility estimation method in noise environments when the bottleneck feature of autoencoder is used as an input to a neural network. The bottleneck feature-based method has the problem of severe performance degradation when the noise environment is changed. In order to overcome this problem, we propose a novel non-intrusive speech intelligibility estimation method that adds the noise environment information along with bottleneck feature to the input of long short-term memory (LSTM) neural network whose output is a short-time objective intelligence (STOI) score that is a standard tool for measuring intrusive speech intelligibility with reference speech signals. From the experiments in various noise environments, the proposed method showed improved performance when the noise environment is same. In particular, the performance was significant improved compared to that of the conventional methods in different environments. Therefore, we can conclude that the method proposed in this paper can be successfully used for estimating non-intrusive speech intelligibility in various noise environments.

Speech Recognition in Noisy Environments using the NOise Spectrum Estimation based on the Histogram Technique (히스토그램 처리방법에 의한 잡음 스펙트럼 추정을 이용한 잡음환경에서의 음성인식)

  • Kwon, Young-Uk;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.68-75
    • /
    • 1997
  • Spectral subtraction is widely-used preprocessing technique for speech recognition in additive noise environments, but it requires a good estimate of the noise power spectrum. In this paper, we employ the histogram technique for the estimation of noise spectrum. This technique has advantages over other noise estimation methods in that it does not requires speech/non-speech detection and can estimate slowly-varying noise spectra. According to the speaker-independent isolated word recognition in both colored Gaussian and car noise environments under various SNR conditions. Histogram-technique-based spectral subtraction method yields superier performance to the one with conventional noise estimation method using the spectral average of initial frames during non-speech period.

  • PDF

Motion-Compensated Noise Estimation for Effective Video Processing (효과적인 동영상 처리를 위한 움직임 보상 기반 잡음 예측)

  • Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.120-125
    • /
    • 2009
  • For effective noise removal prior to video processing, noise power or noise variance of an input video sequence needs to be found exactly, but it is actually a very difficult process. This paper presents an accurate noise variance estimation algorithm based on motion compensation between two adjacent noisy pictures. Firstly, motion estimation is performed for each block in a picture, and the residue variance of the best motion-compensated block is calculated. Then, a noise variance estimate of the picture is obtained by adaptively averaging and properly scaling the variances close to the best variance. The simulation results show that the proposed noise estimation algorithm is very accurate and stable irrespective of noise level.

Non-Stationary/Mixed Noise Estimation Algorithm Based on Minimum Statistics and Codebook Driven Short-Term Predictor Parameter Estimation (최소 통계법과 Short-Term 예측계수 코드북을 이용한 Non-Stationary/Mixed 배경잡음 추정 기법)

  • Lee, Myeong-Seok;Noh, Myung-Hoon;Park, Sung-Joo;Lee, Seok-Pil;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.200-208
    • /
    • 2010
  • In this work, the minimum statistics (MS) algorithm is combined with the codebook driven short-term predictor parameter estimation (CDSTP) to design a speech enhancement algorithm that is robust against various background noise environments. The MS algorithm functions well for the stationary noise but relatively not for the non-stationary noise. The CDSTP works efficiently for the non-stationary noise, but not for the noise that was not considered in the training stage. Thus, we propose to combine CDSTP and MS. Compared with the single use of MS and CDSTP, the proposed method produces better perceptual evaluation of speech quality (PESQ) score, and especially works excellent for the mixed background noise between stationary and non-stationary noises.