• Title/Summary/Keyword: Noise detection algorithm

Search Result 874, Processing Time 0.034 seconds

Heart Valve Stenosis Region Detection Algorithm on Heart Sounds (심음에서의 심장판막협착 영역 검출 알고리듬)

  • Lee, G.H.;Lee, Y.J.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1330-1340
    • /
    • 2012
  • In this paper, a new algorithm is proposed for the heart valves stenosis region detection using heart sounds. Many researches for detecting primary components or removing heart murmurs have been studied, but their performances are degraded at abnormal heart sounds such as aortic stenosis and mitral stenosis because of large heart murmurs. In this paper, heart murmur detection method is proposed based on noise intensity function. The proposed noise intensity function detect the primary components S1, S2, then set session up using S1, S2. And then noise intensity function was computed using autocorrelation value of each session. The proposed noise intensity function estimated noise intensity of each sessions and detected heart murmurs. According to simulation results, the proposed algorithm has better performance than former study for detecting heart valve stenosis region.

Adaptive Band Selection for Robust Speech Detection In Noisy Environments

  • Ji Mikyong;Suh Youngjoo;Kim Hoirin
    • MALSORI
    • /
    • no.50
    • /
    • pp.85-97
    • /
    • 2004
  • One of the important problems in speech recognition is to accurately detect the existence of speech in adverse environments. The speech detection problem becomes severer when recognition systems are used over the telephone network, especially in a wireless network and a noisy environment. In this paper, we propose a robust speech detection algorithm, which detects speech boundaries accurately by selecting useful bands adaptively to noisy environments. The bands where noises are mainly distributed, so called, noise-centric bands are introduced. In this paper, we compare two different speech detection algorithms with the proposed algorithm, and evaluate them on noisy environments. The experimental results show the excellence of the proposed speech detection algorithm.

  • PDF

Performance Analysis of Own Ship Noise Cancellation in Hull Mounted Sonar System Using Adaptive Filter (HMS시스템에서 적응필터를 이용한 자함의 소음감소 성능분석)

  • Yoon, Kyung-Sik;Jung, Tae-Jin;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • In a passive sonar, the improvement of detection performance by using noise cancellation is usually a important problem. In this paper, we have analyzed the own-ship noise cancellation in the two operation modes which are used in the HMS system. In the operator mode, an adaptive line enhancer(ALE) is applied to improve the tonal detection by using broadband noise cancellation and the normalized least mean square(NLMS) algorithm is applied to the design of an adaptive filter. The reference input that is correlated with a primary input can be used to remove the noise incident on the observation directionin the automatic mode. Computer simulations with real sea that data show that the proposed adaptive noise canceller has good performance in passive detection under HMS operation.

Efficient Signal Detection Based on Artificial Intelligence for Power Line Communication Systems (전력선통신 시스템을 위한 인공지능 기반 효율적 신호 검출)

  • Kim, Do Kyun;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.42-45
    • /
    • 2017
  • It is known that power line communication systems have more noise than general wired communication systems due to the high voltage that flows in power line cables, and the noise causes a serious performance degradation. In order to mitigate performance degradation due to such noise, this paper proposes an artificial intelligence algorithm based on polynomial regression, which detects signals in the impulse noise environment in the power line communication system. The polynomial regression method is used to predict the original transmitted signal from the impulse noise signal. Simulation results show that the signal detection performance in the impulse noise environment of the power line communication is improved through the artificial intelligence algorithm proposed in this paper.

Improved Cancellation of Impulse Noise Using Rank-Order Method (Rank-Order 방법을 이용한 개선된 임펄스 잡음 제거)

  • Ko, Kyung-Woo;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • This paper proposes a cancellation algorithm of impulse noise using a rank-order method. The proposed method is a fast and simple algorithm that is composed of two parts. The first part involves noise detection using a fuzzy technique, where an image is divided into RGB color channels. Then every pixel in each color channel is investigated and assigned a probability indicating its chances of being a noise pixel. At this time, the rank order method using a noise-detection mask is utilized for accurate noise detection. Thereafter, the second part involves noise-cancellation, where each noise-pixel value in an image is replaced in proportion to its fuzzy probability. Through the experiments, both the conventional and proposed methods were simulated and compared. As a result, it is shown that proposed method is able to detect noisy pixels more accurately, and produce resulting images with high PSNR values.

Fault Detection and Diagnosis of Dynamic Systems with Sequentially Correlated Measurement Noise

  • Kim, B.S.;Y, J. Lee;Kim, K.Y.;Lee, I.S.;Lee, D.Y.;Lee, J.W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.4-157
    • /
    • 2001
  • An effective approach to detect and diagnose multiple failures in a dynamic system is proposed for the case where the measurement noise is correlated sequentially in time. It is based on the modified interacting multiple-model (MIMM) estimation algorithm in which a generalized decorrelation process is developed by employing the autoregressive (AR) model for the correlated measurement noise. Numerical example for the nuclear steam generator is provided to illustrate the enhanced performance of the proposed algorithm.

  • PDF

Statistics based localized damage detection using vibration response

  • Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.85-104
    • /
    • 2014
  • Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.

Extension Filter using Noise Distribution in Salt and Pepper Noise Environments (Salt and Pepper 잡음 환경에서 잡음 분포를 이용한 확장 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.429-431
    • /
    • 2019
  • Noise in image processing has a direct effect on the quality of the image, and adversely affects the processing of the system including algorithms such as image segmentation, edge detection, and image recognition. Therefore, noise reduction plays an important role in the preprocessing process. In this paper, we propose an efficient algorithm to remove noise in high density of Salt and Pepper noise. The proposed algorithm removes noise by gradually expanding the filtering mask according to the density of the noise, and shows excellent noise cancellation performance even in a high density region. In order to evaluate the performance of the proposed algorithm, we compared and analyzed the existing method and the proposed algorithm through simulation.

  • PDF

MOTION DETECTION USING CURVATURE MAP AND TWO-STEP BIMODAL SEGMENTATION

  • Lee, Suk-Ho
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.247-256
    • /
    • 2009
  • In this paper, a motion detection algorithm which works well in low illumination environment is proposed. By using the level set based bimodal motion segmentation, the algorithm obtains an automatic segmentation of the motion region and the spurious regions due to the large CCD noise in low illumination environment are removed effectively.

  • PDF

Target Detection Algorithm Based on Seismic Sensor for Adaptation of Background Noise (배경잡음에 적응하는 진동센서 기반 목표물 탐지 알고리즘)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho;Kwon, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.258-266
    • /
    • 2013
  • We propose adaptive detection algorithm to reduce a false alarm by considering the characteristics of the random noise on the detection system based on a seismic sensor. The proposed algorithm consists of the first step detection using kernel function and the second step detection using detection classes. Kernel function of the first step detection is obtained from the threshold of the Neyman-Pearon decision criterion using the probability density functions varied along the noise from the measured signal. The second step detector consists of 4 step detection class by calculating the occupancy time of the footstep using the first detected samples. In order to verify performance of the proposed algorithm, the detection of the footsteps using measured signal of targets (walking and running) are performed experimentally. The detection results are compared with a fixed threshold detector. The first step detection result has the high detection performance of 95% up to 10m area. Also, the false alarm probability is decreased from 40% to 20% when it is compared with the fixed threshold detector. By applying the detection class(second step detector), it is greatly reduced to less than 4%.