• Title/Summary/Keyword: Noise calculations

Search Result 144, Processing Time 0.021 seconds

A Study on the Active Noise Cancellation System in a Vehicle Cabin Using the Weighting Factors of Control Error Path (제어오차계의 가중치를 이용한 차실내 능동소음제어 시스템 연구)

  • 홍석윤;허현무
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • The active noise cancellation system showing the effective convergence and stability has been studied by simplifying the controller structures using the weighting factors of control error path to the multi-channel filtered-x LMS algorithm which needs a lot of calculations and the performance has been verified experimentally. Besides, to implement the system performance in a vehicle cabin, experimental work for selecting the suitable numbers and positions of the microphones and speakers was accomplished. Effectively combining a TMS 320C 31 main processor conducting real number calculations and having various functions with other components, the purpose-built system board for active noise cancellation has been designed and with this board, car active noise cancellation system showing maximum stable 10dB noise reduction has been obtained at the car idling conditions above 3000rpm range.

  • PDF

AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY (CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석)

  • Kang, H.J.;Kim, D.H.;Wie, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.

A Technique for Calculations of Power Flow in Structures Using MSC/NASTRAN and PCL (MSC/NASTRAN 및 PCL을 이용한 구조물 내의 진동 파워 흐름 해석 기법)

  • 홍진숙
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.303-313
    • /
    • 2001
  • The identification of power flow in dynamically loaded structures Is essential in the analysis of structure-borne noise. However there are no general purpose tools to estimate powers flow. To make matters worse. It is very difficult to measure it. The power flow can be formulated in terms of balance forces(ELFORCE) at each element and velocities at the associated node obtained with MSC/NASTHAN. In this paper the procedure which is consist of the computations of the balance forces of al1 elements and the velocities at all nodes using MSC/NASTRAN. The calculations of the power f1ow at each element using PCL(PATRAN Command Language) and the Preparation of post -processes is set UP.

  • PDF

Evaluating of Road Traffic Noise in Apartment Sites With Calculations of Equivalent Noise Levels (단지등가소음도 계산을 통한 공동주택 교통소음 평가방법에 관한 연구)

  • 김경호;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1040-1044
    • /
    • 2001
  • This study is to propose an analyzing method of road traffic noise in apartment sites using computer simulation program. The evaluation method used in this study is to calculate "Site Equivalent Noise Level". It will be possible to set up effective sound proof system with calculation of "The Number of Houses Exceeding Standard Noise Level".

  • PDF

Second order of average current nodal expansion method for the neutron noise simulation

  • Poursalehi, N.;Abed, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1391-1402
    • /
    • 2021
  • The aim of this work is to prepare a neutron noise calculator based on the second order of average current nodal expansion method (ACNEM). Generally, nodal methods have the ability to fulfill the neutronic analysis with adequate precision using coarse meshes as large as a fuel assembly size. But, for the zeroth order of ACNEM, the accuracy of neutronic simulations may not be sufficient when coarse meshes are employed in the reactor core modeling. In this work, the capability of second order ACNEM is extended for solving the neutron diffusion equation in the frequency domain using coarse meshes. For this purpose, two problems are modeled and checked including a slab reactor and 2D BIBLIS PWR. For validating of results, a semi-analytical solution is utilized for 1D test case, and for 2D problem, the results of both forward and adjoint neutron noise calculations are exploited. Numerical results indicate that by increasing the order of method, the errors of frequency dependent coarse mesh solutions are considerably decreased in comparison to the reference. Accordingly, the accuracy of second order ACNEM can be acceptable for the neutron noise calculations by using coarse meshes in the nuclear reactor core.

A Study on Wheel Noise Reduction Device for Railway Vehicle (철도차량 운행시 차륜방사소음 저감장치에 관한 연구)

  • Lee, Byoung-Chul;Lee, Jin-Young;Ho, Kyoung-Chan;Lee, Yong-Hyun;Kim, Gun-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1011-1016
    • /
    • 2010
  • The noise emitted during train operation is generated with various reasons. It is known that the major noise generation is classified according to the ranges of train speed; that is, engine noise at lower speed range, rolling noise at medium speed range, and air-borne noise at higher speed range. These noises are transmitted in combined form with the noises generated from track components and under-carriage, etc. The rolling noise as a major noise at medium speed range is caused by the vibration occurred at wheel/rail interface. The vibration occurred at wheel/rail interface is transmitted to wheel and rail, and this vibration is emitted from wheel and rail as a noise. The object of this study is to investigate the effect of wheel damper of low noise wheel. In this study theoretical and experimental analysis is performed by numerical model calculations and impact test.

  • PDF

A Study on the Method for Reducing the Noise of the Progressive Multi-Leaf Spring (Progressive Multi-Leaf Spring의 소음저감 방안에 관한 연구)

  • Kim, Sung-Soo;Moon, Won-Kyu;Yoo, Young-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.636-642
    • /
    • 2000
  • A method for reducing the contact noise of the Progressive Multi-Leaf Spring was investigated. It was found that the contact noise between the main and the help springs is the main source of the noise through our experiments. The conclusions from our experiments were compared with those from our numerical analysis by use of ABAQUS. The main parameters for the unexpected noise in the leaf spring were investigated through structural analysis to make describing noise generation. The contact process between the two leaves is examined by numerical calculations by ABAQUS. The noise produced by the leaf spring could be dramatically reduced by changing the shape of help spring so as to remove a translational jump of the contact point between the main and the help springs. Even with the help spring of the new proposed shape the stiffness of the whole spring did not change much.

  • PDF

Acoustic Radiation from Radial Vibration Modes of a Thick Annular Disk (후판 환형 디스크 래디얼 모드에 의한 음향방사에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.412-420
    • /
    • 2005
  • This article proposes analytical solutions for sound radiation from radial vibration modes of a thick annular disk. Structural eigensolutions are calculated using the transfer matrix method. The far-field sound pressure distribution is obtained using two alternate methods. In the first method, pressure is calculated using the Rayleigh integral technique. The second method treats sound radiating radial surfaces as cylindrical radiators of finite length. The Sinc function approach is employed for calculations. Acoustic powers and radiation efficiencies of radial modes are also determined from the far-field sound pressure calculations. Analytical predictions match well with measured data as well as computational results from a finite element code in terms of structural eigensolutions and from a boundary element code in terms of sound pressure, directivity etc.

Acoustical Properties of Polyester Sound Absorbing Materials (폴리에스테르 흡음재의 음향특성)

  • 주경민;용호택;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1347-1352
    • /
    • 2001
  • In this study, the acoustic properties of polyester sound absorbing materials with three different bulk densities were investigated by calculating and measuring the acoustic parameters in terms of characteristic impedance, propagation constant, and absorption coefficient. For the calculations, Delany and Bazley's empirical equation was used together with the experimentally obtained specific flow resistivities under steady flow conditions. For the experimental measurements, the well-known two-thickness method was accessed. The experimentally measured values of characteristic impedance and propagation constant were generally agreed well with the corresponding calculated values. Based on the comparisons between the calculations and measurements, it was found that the magnitude of the absorption coefficient was closely related to the characteristic impedance and the real part of the propagation constant. Especially, the maximum magnitude of the absorption coefficient was depended upon the imaginary part of the propagation constant indicating the phase change of the propagation constant.

  • PDF