• Title/Summary/Keyword: Noise antenna

Search Result 444, Processing Time 0.025 seconds

Performance of Convolutionally-Coded MIMO Systems with Antenna Selection

  • Hamouda Walaa;Ghrayeb Ali
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.307-312
    • /
    • 2005
  • In this work, we study the performance of a serial concatenated scheme comprising a convolutional code (CC) and an orthogonal space-time block code (STBC) separated by an inter-leaver. Specifically, we derive performance bounds for this concatenated scheme, clearly quantify the impact of using a CC in conjunction with a STBC, and compare that to using a STBC code only. Furthermore, we examine the impact of performing antenna selection at the receiver on the diversity order and coding gain of the system. In performing antenna selection, we adopt a selection criterion that is based on maximizing the instantaneous signal-to­noise ratio (SNR) at the receiver. That is, we select a subset of the available receive antennas that maximizes the received SNR. Two channel models are considered in this study: Fast fading and quasi-static fading. For both cases, our analyses show that substantial coding gains can be achieved, which is confirmed through Monte-Carlo simulations. We demonstrate that the spatial diversity is maintained for all cases, whereas the coding gain deteriorates by no more than $10\;log_{10}$ (M / L) dB, all relative to the full complexity multiple-input multiple-output (MIMO) system.

A Multi-Channel Correlative Vector Direction Finding System Using Active Dipole Antenna Array for Mobile Direction Finding Applications

  • Choi, Jun-Ho;Park, Cheol-Sun;Nah, Sun-Phil;Jang, Won
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.161-168
    • /
    • 2007
  • A fast correlative vector direction finding(CVDF) system using active dipole antenna array for mobile direction finding(DF) applications is presented. To develop the CVDF system, the main elements such as active dipole antenna, multi-channel direction finder, and search receiver are designed and analyzed. The active antenna is designed as composite structure to improve the filed strength sensitivity over the wide frequency range, and the multi-channel direction finder and search receiver are designed using DDS-based PLL with settling time of below 35 us to achieve short signal processing time. This system provides the capabilities of the high DF sensitivity over the wide frequency range and allows for high probability of intercept and accurate angle of arrival(AOA) estimation for agile signals. The design and performance analysis according to the external noise and modulation schemes of the CVDF system with five-element circular array are presented in detail.

Design of Preamplifier for the Vehicle Glass Antenna (차량용 TV Glass 안테나의 전치증폭기 설계)

  • Han, Sang-Il;Kim, Ji-Hyo;Kim, Sang-Jin;Soo, June-Hoo;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1120-1122
    • /
    • 1999
  • In the design of vehicle glass antenna system, it is essential to use preamplifier between the glass antenna and the TV set, since glass antenna has low gain. In this paper, the preamplifier has been designed in the frequency range from 50MHz to 900MHz with the gam of 10dB. A negative feedback technique has been employed for the wideband characteristics of the amplifler. A DC block capacitor is also used to obtain flat gain response in the wide frequency range. The experimental result shows 1dB ripple in 9dB gain and 0.5dB ripple in 3dB noise figure. The test results were compared with those of the performed by the EEsof-touchstone.

  • PDF

Sweet Spot Search of Antenna Beam using the Modified Genetic Algorithm (변형된 유전자 알고리즘을 이용한 안테나 빔의 스위트 스폿 탐색)

  • Eom, Ki-Hwan;Jung, Kyung-Kwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.47-54
    • /
    • 2005
  • In this paper, we propose a method that search the sweet spot of antenna beam, and keep it for fast speed transmission in millimeter wave on point-to-point link. We use TDD(Time Division Duplex) as transfer method, and it transfers the control data of antenna. The proposed method is the modified genetic algorithm which selects a superior initial group through slave-processing in order to resolve the local solution of genetic algorithm. The efficiency of the proposed method is verified by means of simulations with white Gaussian noise and not on point-to-point link.

A Study on the Optimum Weight Vector of Linearly Constrained Conditions (선형 제한 조건의 최적 가중 벡터에 대한 연구)

  • Shin, Ho-Sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.101-107
    • /
    • 2011
  • The optimum weight vector is studied to remove interference and jamming signals in adaptive array antenna system. The optimum weight vector is calculated to apply a minimum variance algorithm and cost function in linearly constrained conditions, and accurately estimates target's signal. Adaptive array antenna system is the system which improves signal to noise ratio(SNR) and decreases interference and jammer power. Adaptive array antenna system delays at tap output of antenna array element. Each tap finally makes the complex signal of one in multiplier complex weight. In order to obtain optimum's weight calculation, optimum weight vector is used in this paper. After simulation, resolution is increased below $3^{\circ}$, and sidelobe is decreased about 10 dB.

Interference Mitigation Scheme by Antenna Selection in Device-to-Device Communication Underlaying Cellular Networks

  • Wang, Yuyang;Jin, Shi;Ni, Yiyang;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.429-438
    • /
    • 2016
  • In this paper, we investigate an interference mitigation scheme by antenna selection in device-to-device (D2D) communication underlaying downlink cellular networks. We first present the closed-form expression of the system achievable rate and its asymptotic behaviors at high signal-to-noise ratio (SNR) and the large antenna number scenarios. It is shown that the high SNR approximation increases with more antennas and higher ratio between the transmit SNR at the base station (BS) and the D2D transmitter. In addition, a tight approximation is derived for the rate and we reveal two thresholds for both the distance of the D2D link and the transmit SNR at the BS above which the underlaid D2D communication will degrade the system rate. We then particularize on the small cell setting where all users are closely located. In the small cell scenario, we show that the relationship between the distance of the D2D transmitting link and that of the D2D interfering link to the cellular user determines whether the D2D communication can enhance the system achievable rate. Numerical results are provided to verify these results.

Sweet Spot Search of Antenna Beam using The Two ADALINE (두개의 ADALINE을 이용한 안테나 빔의 스위트 스폿 탐색)

  • Lee, Chang-Young;Choi, Kyu-Min;Kang, Seong-Ho;Chung, Sung-Boo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.705-708
    • /
    • 2005
  • In this paper, we propose a method that search the sweet spot of antenna beam, and keep it for fast speed transmission in millimeter wave on point-to-point link We use TDD(Time Division Duplex) as transfer method, and it transfers the control data of antenna. The proposed method is composed of two ADALINE which used the parallel. The efficiency of the proposed method is verified by means of simulations with white Gaussian noise and not on point-to-point link.

  • PDF

Design and Experiment of Ku_band Linear Active Phased Array Antenna System (Ku 대역 선형 능동 위상 배열 안테나 시스템 설계 및 실험)

  • Ryu Sung-Wook;Eom Soon-Young;Yun Jae-Hoon;Jeon Soon-Ick;Kim Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.694-705
    • /
    • 2006
  • In this paper, the linear active phased array antenna system operated in Ku DBS band was designed and experimented. The antenna system was composed of sixteen radiating active channels and Wilkinson power combiners with 16-channel inputs, a stabilizing DC bias and phase control board. Electrical beams of the antenna system can be formed by controling the phase-states of 3-bit digital phase shifter inside each active channel by virtue of the phase control board. The amplitude and phase deviations measured between active channels were less than ${\pm}0.8dB$ and ${\pm}15^{\circ}$, respectively, and the noise figure of each active channel was measured less than 1.2 dB in the operating band. The measured performances of the overall antenna system showed the antenna gain of more than 23.07 dBi and the sidelobe level of less than -11.17 dBc, and the bore-sight cross-polarization level of less than -12.75 dBc in the operating band. Also, by phase-controlling active channels, the beam scan patterns at $10^{\circ},\;20^{\circ},\;30^{\circ}$ were measured, and the losses caused by the corresponding beam scanning were 1.1 dB, 2.5 dB and 3.6 dB from the measurements, respectively.

Mutual Coupling Compensation for an Antenna Array and Direction Of Arrival Estimation Using ESPRIT (ESPRIT 알고리듬을 이용한 안테나 배열의 상호결합 보상과 도래각 추정)

  • Hong, Jeong-Geun;Ahn, Woo-Hyun;Seo, Bo-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.37-42
    • /
    • 2013
  • In this paper, we propose a compensation method of a non-ideal antenna array and a computationally efficient estimation method of the direction of arrival (DOA) for the antenna array. For DOA estimation, an antenna array is essential. By using the phase difference between the output signals of antennas, we can derive the DOA. In practice, however, mutual coupling between the elements of an antenna array change the beam pattern of each element and degrade the performance of DOA estimation. In the proposed method, we first estimate the DOA for the mid-subarray of the array, where all elements undergo relatively same coupling effect. We use the estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm to estimate the DOA. Then, we expand the array based on the estimated DOA by compensating the coupling effect. Simulation results show that the proposed method is effective when jamming to noise power ratio (JNR)is relative low.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF