• Title/Summary/Keyword: Noise Insulation Value

Search Result 27, Processing Time 0.018 seconds

An Experimental Study or the Prediction Method of Floor Impact Sound Insulation Performance in Apartment House Using Impedance Method(II) (임피던스법을 이용한 공동주택 바닥 충격음 차음성능 예측방법에 관한 실험 적 연구(II) - 경량 표준충격원을 중심으로 -)

  • 김재수;장길수;김선우
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 1992
  • In the previous paper, we report a practical floor impact sound level prediction method for a heavyweight impact source(Tire), soft impact source such as children jumping and running. According to these results, the calculated value and the measured value correspond comparatively well, regardless of differences in the floor structures. And the floor impact sound for a heavyweight impact source, soft source was strongly influenced by structural factors such as floor slab stiffness and peripheral support conditions. But the floor impact sound for a light impact source (Tapping machine), hard impact source was influenced by resilient layers, composed of multi-layer in floor structures. Thus, In this paper, 4 actual floor structures, all with differing resilient layers, were calculated using impedance method. When these calculation values were compared with the measured values, approximately all the values fell with one rank of the sound insulation grade, reference curve(L curve) by the JIS standard. So, a sample of measured values and calculated values from floor structures is presented to show the accuracy and appropriateness of the impedance method in domestic.

  • PDF

Measurement and evaluation of speech privacy in university office rooms (대학 내 사무실의 스피치 프라이버시 측정 및 평가)

  • Lim, Jae-Seop;Choi, Young-Ji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.396-405
    • /
    • 2019
  • The speech privacy of closed office rooms located in a university campus was measured and assessed in terms of SPC (Speech Privacy Class) values. The measurements of two quantities, the LD (Level Difference) between a source and a receiving room, and the background noise level ($L_b$) at the receiving room were carried out in 5 rooms located in 3 different buildings in the university campus. Each of the 5 rooms was adjacent to both offices and corridors through walls. The TL (Transmission Loss) between the source and the receiver room was also measured to compare the difference of two standard methods, ASTM E2836-10 and KS F 2809. The present results show that the speech privacy of the 5 office rooms is not met the requirement for a minimum SPC values of 70. A minimum LD value of 41 dB between the source and the receiver room should be achieved for having a SPC value of 70 when the mean measured value of $L_b$ at the receiving room is 29.2 dB. That is, the TL(avg) value averaged over the octave bands from 160 Hz to 5000 Hz between the source and the receiver room should be or greater than 40 dB. The most important architectural factor influencing the LD value is the presence of openings, such as doors, and windows, on the adjacent walls between the source and receiving room. Therefore, if the opening of the adjacent wall is replaced by an opening with high sound insulation, the appropriate SPC value of the research and office rooms can be achieved.

A Study on the Algorithm for Detection of Partial Discharge in GIS Using the Wavelet Transform

  • J.S. Kang;S.M. Yeo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.214-221
    • /
    • 2003
  • In view of the fact that gas insulated switchgear (GIS) is an important piece of equipment in a substation, it is highly desirable to continuously monitor the state of equipment by measuring the partial discharge (PD) activity in a GIS, as PD is a symptom of an insulation weakness/breakdown. However, since the PD signal is relatively weak and the external noise makes detection of the PD signal difficult, it therefore requires careful attention in its detection. In this paper, the algorithm for detection of PD in the GIS using the wavelet transform (WT) is proposed. The WT provides a direct quantitative measure of the spectral content and dynamic spectrum in the time-frequency domain. The most appropriate mother wavelet for this application is the Daubechies 4 (db4) wavelet. 'db4', the most commonly applied mother wavelet in the power quality analysis, is very well suited to detecting high frequency signals of very short duration, such as those associated with the PD phenomenon. The proposed algorithm is based on utilizing the absolute sum value of coefficients, which are a combination of D1 (Detail 1) and D2 (Detail 2) in multiresolution signal decomposition (MSD) based on WT after noise elimination and normalization.

Carrier Phase-Shift PWM to Reduce Common-Mode Voltage for Three-Level T-Type NPC Inverters

  • Nguyen, Tuyen D.;Phan, Dzung Quoc;Dao, Dat Ngoc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1197-1207
    • /
    • 2014
  • Common-mode voltage (CMV) causes overvoltage stress to winding insulation and damages AC motors. CMV with high dv/dt causes leakage currents, which create noise problems for equipment installed near the converter. This study proposes a new pulse-width modulation (PWM) strategy for three-level T-type NPC inverters. This strategy substantially eliminates CMV. The principle for selecting suitable triangle carrier signals for the three-level T-type NPC is described. The proposed method can mitigate the peak value of CMV by 50% compared with the phase disposition pulse-width modulation method. Furthermore, the proposed method exhibits better harmonic spectrum and lower root mean square value for the CMV than those of the reduced-CMV method on the basis of the phase opposition disposition PWM scheme with modulation index higher than 0.5. The proposed modulation can easily be implemented using software without any additional hardware modifications. Both simulation and experimental results demonstrate that the proposed carrier phase-shift PWM method has good output waveform performance and reduces CMV.

A Study on Characteristics and Modeling of CMV by Grounding Methods of Transformer for ESS (ESS용 변압기의 접지방식에 의한 CMV 모델링 및 특성에 관한 연구)

  • Choi, Sung-Moon;Kim, Seung-Ho;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.587-593
    • /
    • 2021
  • Since 2017, a total of 29 fire accidents have occurred in energy storage systems (ESSs) as of June 2020. The common mode voltage (CMV) is one of the electrical hazards that is assumed to be a cause of those fire accidents. Several cases of CMV that violate the allowable insulation level of a battery section are being reported in actual ESS operation sites with △-Y winding connections. Thus, this paper evaluates the characteristics of CMV. An ESS site was modeled with an AC grid, PCS, and battery sections using PSCAD/EMTDC software. As a result of a simulation based on the proposed model, it was confirmed that characteristics of CMV vary significantly and are similar to actual measurements, depending on the grounding method of the internal transformer for PCS. The insulation level of the battery section may be severely degraded as the value of CMV exceeds the rated voltage in case of a grounding connection. It was found that the value of CMV dramatically declines when the internal transformer for PCS is operated as non-grounding connection, so it meets the standard insulation level.

UHF Sensor Development for Partial Discharge Exclusively for Measurement in 25.8kV GIS (25.8kV GIS 부분방전 측정전용 UHF센서 개발)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1083-1088
    • /
    • 2016
  • 25.8kV GIS part generated by sensors to measure contact an inflow of noise depending on the extent of the measured discharge occurs often not easy. Partial discharge signal measurement sensor suitable for developing a more useful measurements at the scene to this, partial discharge waveform analysis developed a sensor, and to utilize forSensor on the development of the most important is VSWR decided to (voltage standing wave ratio) voltage standing-wave ratio less than 1.5 and decided less than at the full spectrum bands that are measured, this time Return loss, as measured value by absolute criteria 14.0 dB produced the sensor, designed to or more. UHF 1.5~0.5 GHz bandwidth spectrum to be measured in GIS. UHF bands were designed to be able to measure the best signal. Recently, 25.8kV GIS production company has been increasing variety of GIS were made open spacer in partial discharge in accordance with the not very easy to detect the signal. The sensor is designed height of four cm external spacer is attachment GIS in an influx of outside noise measurement, and be so manufactured as to facilitate the least we've done. Also, since partial discharge which occur can measure the frequency of the 170kV GIS external partial-discharge signals that occur at the scene of insulation applied to the spacer. Features, and also derived good results using global positioning. Also measured discharge point about sensors that are stable and the reliability of the development and local substation equipment failure occurring signal analysis through the discharge for the prevention of widely. There should be to believe that used.

Comparison of Sound Transmission through Single and Double-layer Polymer Panels (폴리머계 단일 및 이중구조 방음패널의 차음특성 비교분석)

  • Kim, Il-Ho;Lee, Ju Haeng;Son, Jin-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.597-603
    • /
    • 2014
  • The aim of the present study is to compare sound performance depending on thickness, materials, and structure of polymer soundproof panels consisting of PC, PMMA, HDPE, and PP, respectively. As a result of comparing sound transmission loss (STL) of single layer panel made of four types of polymer, the better sound transmission loss was obtained in order of PC, PMMA, HDPE, and PP, which was obviously followed mass law. 8 mm of single panel showed 5~6 dB(A) greater STL than that of 4 mm panels and lower frequency for coincidence effect so that STL of 8 mm panels decreased around 4,000~5,000 Hz, indicating less STL of 4 mm panels than those of 8 mm. When it comes to structure, 4 mm panels with air layer appeared similar value of STL with 8 mm single panels under 300 Hz. In range of high frequency above 2,000 Hz, 4 mm panels with air layer performed better than 8 mm of single layer panel while resonance effects were observed at 500~630 Hz. It was found that these results could be practically utilized as fundamental data for noise barriers design considering the change to each condition.