• Title/Summary/Keyword: Noise Image

Search Result 3,324, Processing Time 0.029 seconds

Delineation of a fault zone beneath a riverbed by an electrical resistivity survey using a floating streamer cable (스트리머 전기비저항 탐사에 의한 하저 단층 탐지)

  • Kwon Hyoung-Seok;Kim Jung-Ho;Ahn Hee-Yoon;Yoon Jin-Sung;Kim Ki-Seog;Jung Chi-Kwang;Lee Seung-Bok;Uchida Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.50-58
    • /
    • 2005
  • Recently, the imaging of geological structures beneath water-covered areas has been in great demand because of numerous tunnel and bridge construction projects on river or lake sites. An electrical resistivity survey can be effective in such a situation because it provides a subsurface image of faults or weak zones beneath the water layer. Even though conventional resistivity surveys in water-covered areas, in which electrodes are installed on the water bottom, do give high-resolution subsurface images, much time and effort is required to install electrodes. Therefore, an easier and more convenient method is sought to find the strike direction of the main zones of weakness, especially for reconnaissance surveys. In this paper, we investigate the applicability of the streamer resistivity survey method, which uses electrodes in a streamer cable towed by ship or boat, for delineating a fault zone. We do this through numerical experiments with models of water-covered areas. We demonstrate that the fault zone can be imaged, not only by installing electrodes on the water bottom, but also by using floating electrodes, when the depth of water is less than twice the electrode spacing. In addition, we compare the signal-to-noise ratio and resolving power of four kinds of electrode arrays that can be adapted to the streamer resistivity method. Following this numerical study, we carried out both conventional and streamer resistivity surveys for the planned tunnel construction site located at the Han River in Seoul, Korea. To obtain high-resolution resistivity images we used the conventional method, and installed electrodes on the water bottom along the planned route of the tunnel beneath the river. Applying a two-dimensional inversion scheme to the measured data, we found three distinctive low-resistivity anomalies, which we interpreted as associated with fault zones. To determine the strike direction of these three fault zones, we used the quick and convenient streamer resistivity.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

Performance Evaluation of Siemens CTI ECAT EXACT 47 Scanner Using NEMA NU2-2001 (NEMA NU2-2001을 이용한 Siemens CTI ECAT EXACT 47 스캐너의 표준 성능 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • Purpose: NEMA NU2-2001 was proposed as a new standard for performance evaluation of whole body PET scanners. in this study, system performance of Siemens CTI ECAT EXACT 47 PET scanner including spatial resolution, sensitivity, scatter fraction, and count rate performance in 2D and 3D mode was evaluated using this new standard method. Methods: ECAT EXACT 47 is a BGO crystal based PET scanner and covers an axial field of view (FOV) of 16.2 cm. Retractable septa allow 2D and 3D data acquisition. All the PET data were acquired according to the NEMA NU2-2001 protocols (coincidence window: 12 ns, energy window: $250{\sim}650$ keV). For the spatial resolution measurement, F-18 point source was placed at the center of the axial FOV((a) x=0, and y=1, (b)x=0, and y=10, (c)x=70, and y=0cm) and a position one fourth of the axial FOV from the center ((a) x=0, and y=1, (b)x=0, and y=10, (c)x=10, and y=0cm). In this case, x and y are transaxial horizontal and vertical, and z is the scanner's axial direction. Images were reconstructed using FBP with ramp filter without any post processing. To measure the system sensitivity, NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves were scanned at the center of transaxial FOV and 10 cm offset from the center. Attenuation free values of sensitivity wire estimated by extrapolating data to the zero wall thickness. NEMA scatter phantom with length of 70 cm was filled with F-18 or C-11solution (2D: 2,900 MBq, 3D: 407 MBq), and coincidence count rates wire measured for 7 half-lives to obtain noise equivalent count rate (MECR) and scatter fraction. We confirmed that dead time loss of the last flame were below 1%. Scatter fraction was estimated by averaging the true to background (staffer+random) ratios of last 3 frames in which the fractions of random rate art negligibly small. Results: Axial and transverse resolutions at 1cm offset from the center were 0.62 and 0.66 cm (FBP in 2D and 3D), and 0.67 and 0.69 cm (FBP in 2D and 3D). Axial, transverse radial, and transverse tangential resolutions at 10cm offset from the center were 0.72 and 0.68 cm (FBP in 2D and 3D), 0.63 and 0.66 cm (FBP in 2D and 3D), and 0.72 and 0.66 cm (FBP in 2D and 3D). Sensitivity values were 708.6 (2D), 2931.3 (3D) counts/sec/MBq at the center and 728.7 (2D, 3398.2 (3D) counts/sec/MBq at 10 cm offset from the center. Scatter fractions were 0.19 (2D) and 0.49 (3D). Peak true count rate and NECR were 64.0 kcps at 40.1 kBq/mL and 49.6 kcps at 40.1 kBq/mL in 2D and 53.7 kcps at 4.76 kBq/mL and 26.4 kcps at 4.47 kBq/mL in 3D. Conclusion: Information about the performance of CTI ECAT EXACT 47 PET scanner reported in this study will be useful for the quantitative analysis of data and determination of optimal image acquisition protocols using this widely used scanner for clinical and research purposes.