• 제목/요약/키워드: Noise Identification

검색결과 898건 처리시간 0.026초

구조동특성해석을 위한 ARMAX 모형의 식별과 선형추정 알고리즘 (Identification of ARMAX Model and Linear Estimation Algorithm for Structural Dynamic Characteristics Analysis)

  • 최의중;이상조
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.178-187
    • /
    • 1999
  • In order to identify a transfer function model with noise, penalty function method has been widely used. In this method, estimation process for possible model parameters from low to higher order proceeds the model identification process. In this study, based on linear estimation method, a new approach unifying the estimation and the identification of ARMAX model is proposed. For the parameter estimation of a transfer function model with noise, linear estimation method by noise separation is suggested instead of nonlinear estimation method. The feasibility of the proposed model identification and estimation method is verified through simulations, namely by applying the method to time series model. In the case of time series model with noise, the proposed method successfully identifies the transfer function model with noise without going through model parameter identification process in advance. A new algorithm effectively achieving model identification and parameter estimation in unified frame has been proposed. This approach is different from the conventional method used for identification of ARMAX model which needs separate parameter estimation and model identification processes. The consistency and the accuracy of the proposed method has been verified through simulations.

  • PDF

실내 공간에서의 음원 탐지 방법 (Source Identification in an Interior Sound Field)

  • 김양한;최영철
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.520-526
    • /
    • 2002
  • Identification of noose sources, their locations and strengths, has been taken great attention. The methods that can identify noise sources normally assume that noise sources are located in a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field. reflections are added to sound field. Therefore, we haute to consider the reverberation effect on the source identification method. The main objective of this paper is to identify noise source in the reverberant field. At fist, we try to identify noise sources in a rigid wall emc;psire using the beamforming method. In many cases of practical interest, the wall has admittance so that random reflections occur in an enclosure. In this paper, we assumed the complex reverberant field in the enclosure to be the sum of plane caves with random Incidence and magnitude. Then we try to explain effects of reverberant field at interior source identification.

IV 방법을 이용한 잡음이 포함된 베어링 실험 장치의 동특성 파라미터 추출 (An Application of the Instrumental Variable Method(IVM) to a Parameter Identification of a Noise Contaminated Bearing Test Rig)

  • 이용복;김창호;최동훈
    • 소음진동
    • /
    • 제6권5호
    • /
    • pp.679-684
    • /
    • 1996
  • The Instrumental Variable Method(IVM), modified from least square algorithm, is applied to parameter identification of a noise contaminated bearing test rig. The signal to noise ratio included in Frequency Response Function(FRF) can cause significant errors in parameter identification. Therefore, among several candidates of parameter identification method, results of the applied IVM were compared with noise-contaminated least square method. This study shows that the noise-contaminated least square method can have indonsistent accuracy depending on the degree of noise level, while the IVM has robuster performance to signal to noise ratio than least square method.

  • PDF

청음용 자동차 로드노이즈 추출 방법 연구 (A Study on Road Noise Extraction Methods for Listening)

  • 국형석;김형건;조문환;이강덕
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.844-850
    • /
    • 2016
  • This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.

마커 자동 인식 향상 방법에 관한 연구 (The study for improve a method of Marker auto- identification)

  • 이현섭
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.23-38
    • /
    • 2003
  • The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.

반사파가 존재하는 실내 공간에서의 음원 탐지 방법 (Source Identification in an Interior Sound Field)

  • 최영철;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1203-1209
    • /
    • 2001
  • Identification of noise sources, their locations and strengths, have been taken great attention. The method that can identify noise sources normally assumes that noise sources are located at a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field, reflections are added to sound field. Therefore, we have to consider the reverberation effect on the source identification method. The main objective of this paper is to identify noise source in the reverberant field. At fist, we try to identify noise sources in a rigid wall enclosure using the spherical beamforming method. In many case of practical interest, the wall has an admittance so that complex reflection process occurred. In this paper, we assumed the complex reverberant field in the enclosure to be the sum of plane waves with random incidence and magnitude. Then the effects of reverberant field at interior source identification have been studied theoretically as well as experimentally

  • PDF

Modified Tikhonov regularization in model updating for damage identification

  • Wang, J.;Yang, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.585-600
    • /
    • 2012
  • This paper presents a Modified Tikhonov Regularization (MTR) method in model updating for damage identification with model errors and measurement noise influences consideration. The identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is usually solved with regularization method. When the structural system contains model errors and measurement noise, the identified results from Tikhonov Regularization (TR) method often diverge after several iterations. In the MTR method, new side conditions with limits on the identification of physical parameters allow for the presence of model errors and ensure the physical meanings of the identified parameters. Chebyshev polynomial is applied to approximate the acceleration response for moderation of measurement noise. The identified physical parameter can converge to a relative correct direction. A three-dimensional unsymmetrical frame structure with different scenarios is studied to illustrate the proposed method. Results revealed show that the proposed method has superior performance than TR Method when there are both model errors and measurement noise in the structure system.

2극 컴프레셔용 전동기의 소음특성 규명 및 저감 (Noise Identification and Control of 2-Pole Squirrel Cage Motor for Industrial Compressor)

  • 주원호;임종욱;김동해
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.709-712
    • /
    • 2003
  • Recently, high noise problem was experienced during the development of 2-pole squirrel cage motor for industrial compressor. In order to firstly identify the noise characteristics, a variety of measurements were carried out. It was found out that high noise was dominated by linear and nonlinear slot noise components. For the development of low noise indusrial motor, the air gap between rotor and stator in the motor was firstly enlarged. Secondly, it was also modified for the cooling housing to have high absorption features. Consequencely, low noise 2-pole motor having the noise level of less 80㏈(A) was developed. In this paper, a series of noise identification and control process for this motor are introduced.

  • PDF

가시광 무선인식장치에서 비트간 잡음검출에 의한 잡음광의 영향 감소 (Reducing the Effects of Noise Light Using Inter-Bit Noise Detection in a Visible Light Identification System)

  • 황다현;이성호
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.412-419
    • /
    • 2011
  • In this paper, we used the inter-bit noise detection method in order to reduce the effects of noise light in a visible light identification system that uses a visible LED as a carrier source. A visible light identification system consists of a reader and a transponder. When the enable signal from the reader is detected, the transponder encodes the response data in RZ(Return-to-Zero) bit stream and sends response signal by modulating a visible LED. The reader detects the response signal mixed with noise light, samples the noise voltage in each blank low time between data bits of the RZ signal, and recovers the original data by subtracting the sampled noise from the received signal. In experiments, we improved the signal-to-noise ratio by 20dB using the inter-bit noise detection method.

Operational modal analysis of structures by stochastic subspace identification with a delay index

  • Li, Dan;Ren, Wei-Xin;Hu, Yi-Ding;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.187-207
    • /
    • 2016
  • Practical ambient excitations of engineering structures usually do not comply with the stationary-white-noise assumption in traditional operational modal analysis methods due to heavy traffic, wind guests, and other disturbances. In order to eliminate spurious modes induced by non-white noise inputs, the improved stochastic subspace identification based on a delay index is proposed in this paper for a representative kind of stationary non-white noise ambient excitations, which have nonzero autocorrelation values near the vertical axis. It relaxes the stationary-white-noise assumption of inputs by avoiding corresponding unqualified elements in the Hankel matrix. Details of the improved stochastic subspace identification algorithms and determination of the delay index are discussed. Numerical simulations on a four-story frame and laboratory vibration experiments on a simply supported beam have demonstrated the accuracy and reliability of the proposed method in eliminating spurious modes under non-white noise ambient excitations.