• Title/Summary/Keyword: Noise Classification

Search Result 678, Processing Time 0.027 seconds

New feature and SVM based advanced classification of Computer Graphics and Photographic Images (노이즈 기반의 새로운 피쳐(feature)와 SVM에 기반한 개선된 CG(Computer Graphics) 및 PI(Photographic Images) 판별 방법)

  • Jeong, DooWon;Chung, Hyunji;Hong, Ilyoung;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.2
    • /
    • pp.311-318
    • /
    • 2014
  • As modern computer graphics technology has been developed, it is hard to discriminate computer graphics from photographic images with the naked eye. Advances in graphics technology has brought a lot of convenience to human, it has side effects such as image forgery, malicious edit and fraudulent means. In order to cope with such problems, studies of various algorithms using a feature that represents a characteristic of an image has been processed. In this paper, we verify directly the existing algorithm, and provide new features based a noise that represents the characteristics of the computer graphics well. And this paper introduces the method of using SVM(Support Vector Machine) with features proposed in previous research to improve the discrimination accuracy.

A Study On The Improvement Of Vehicle Plate Recognition (차량 번호판 인식 효율 향상을 위한 연구)

  • Kong, Yong-Hae;Kwon, Chun-Ki;Kim, Myung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1947-1954
    • /
    • 2009
  • Camera-captured car plate images contain much variation and noise and the character images in a plate are typically very small. We attempted to improve the plate identification efficiency suitable for this undesirable condition. We experimented various image preprocessing and feature extracting methods and the very effective features that can compensate one feature's limitation is determined through extensive experiments. Finally two very effective features that can complement the limitations of each other feature(classifier) are determined and the efficiency is proved by recognition experiments. This approach is very necessary when handling plate character images which are typically small, various, and noisy. Individual classification result, confidence factor, region name relation and feedback verification are comprehensively considered to enhance the overall recognition efficiency. The efficiency of our method is verified by a recognition experiment using real car plate images taken from traffic roads.

A Matrix-Based Graph Matching Algorithm with Application to a Musical Symbol Recognition (행렬기반의 정합 알고리듬에 의한 음악 기호의 인식)

  • Heo, Gyeong-Yong;Jang, Kyung-Sik;Jang, Moon-Ik;Kim, Jai-Hie
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2061-2074
    • /
    • 1998
  • In pattern recognition and image analysis upplications, a graph is a useful tool for complex obect representation and recognition. However it takes much time to pair proper nodes between the prototype graph and an input data graph. Futhermore it is difficult to decide whether the two graphs in a class are the same hecause real images are degradd in general by noise and other distortions. In this paper we propose a matching algorithm using a matrix. The matrix is suiable for simple and easily understood representation and enables the ordering and matching process to be convenient due to its predefined matrix manipulation. The nodes which constitute a gaph are ordered in the matrix by their geometrical positions and this makes it possible to save much comparison time for finding proper node pairs. for the classification, we defined a distance measure thatreflects the symbo's structural aspect that is the sum of the mode distance and the relation distance; the fornet is from the parameters describing the node shapes, the latter from the relations with othes node in the matrix. We also introduced a subdivision operation to compensate node merging which is mainly due t the prepreocessing error. The proposed method is applied to the recognition of musteal symbols and the result is given. The result shows that almost all, except heavily degraded symbols are recognized, and the recognition rate is approximately 95 percent.

  • PDF

Real-Time Textile Dimension Inspection System Using Zone-Crossing Method, Distortion Angle Classifier and Gray-Level Co-occurrence Matrix Features (영역교차법, 왜곡각 분류자 및 명암도 상관행렬 특징자를 이용한 실시간 섬유 성량 검사 시스템)

  • 이응주;이철희
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.112-120
    • /
    • 2000
  • In this paper, we implement a real-time textile dimension inspection system. It can detect various types of real defects which determine the quality of fabric product, defect positions of textile, classify the distortion angel of moving textile and the density. In the implemented system, we measure the density of textile using zone-crossing method with optical lens to solve the noise and real-time problems. And we compensate distortion angel of textile with the classification of distortion types using gaussian gradient and mean gradient features. And also, it detecs real defects of textile and its positions using gray level co-occurrence matrix features. The implemented texile demension inspection systemcan inspect textile dimensions such as density, distortion angle, defect of textile and defect position at real-time. In the implemented proposed texitile dimension inspection system, It is possible to calculate density and detect default of textile at real-time dimension inspection system, it is possible to calculate density and detect default of textile at textile states throughout at all the significant working process such as dyeing, manufacturing, and other texitle processing.

  • PDF

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Deep Learning for Herbal Medicine Image Recognition: Case Study on Four-herb Product

  • Shin, Kyungseop;Lee, Taegyeom;Kim, Jinseong;Jun, Jaesung;Kim, Kyeong-Geun;Kim, Dongyeon;Kim, Dongwoo;Kim, Se Hee;Lee, Eun Jun;Hyun, Okpyung;Leem, Kang-Hyun;Kim, Wonnam
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.87-87
    • /
    • 2019
  • The consumption of herbal medicine and related products (herbal products) have increased in South Korea. At the same time the quality, safety, and efficacy of herbal products is being raised. Currently, the herbal products are standardized and controlled according to the requirements of the Korean Pharmacopoeia, the National Institute of Health and the Ministry of Public Health and Social Affairs. The validation of herbal products and their medicinal component is important, since many of these herbal products are composed of two or more medicinal plants. However, there are no tools to support the validation process. Interest in deep learning has exploded over the past decade, for herbal medicine using algorithms to achieve herb recognition, symptom related target prediction, and drug repositioning have been reported. In this study, individual images of four herbs (Panax ginseng C.A. Meyer, Atractylodes macrocephala Koidz, Poria cocos Wolf, Glycyrrhiza uralensis Fischer), actually sold in the market, were achieved. Certain image preprocessing steps such as noise reduction and resize were formatted. After the features are optimized, we applied GoogLeNet_Inception v4 model for herb image recognition. Experimental results show that our method achieved test accuracy of 95%. However, there are two limitations in the current study. Firstly, due to the relatively small data collection (100 images), the training loss is much lower than validation loss which possess overfitting problem. Secondly, herbal products are mostly in a mixture, the applied method cannot be reliable to detect a single herb from a mixture. Thus, further large data collection and improved object detection is needed for better classification.

  • PDF

Joint Time Delay and Angle Estimation Using the Matrix Pencil Method Based on Information Reconstruction Vector

  • Li, Haiwen;Ren, Xiukun;Bai, Ting;Zhang, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5860-5876
    • /
    • 2018
  • A single snapshot data can only provide limited amount of information so that the rank of covariance matrix is not full, which is not adopted to complete the parameter estimation directly using the traditional super-resolution method. Aiming at solving the problem, a joint time delay and angle estimation using matrix pencil method based on information reconstruction vector for orthogonal frequency division multiplexing (OFDM) signal is proposed. Firstly, according to the channel frequency response vector of each array element, the algorithm reconstructs the vector data with delay and angle parameter information from both frequency and space dimensions. Then the enhanced data matrix for the extended array element is constructed, and the parameter vector of time delay and angle is estimated by the two-dimensional matrix pencil (2D MP) algorithm. Finally, the joint estimation of two-dimensional parameters is accomplished by the parameter pairing. The algorithm does not need a pseudo-spectral peak search, and the location of the target can be determined only by a single receiver, which can reduce the overhead of the positioning system. The theoretical analysis and simulation results show that the estimation accuracy of the proposed method in a single snapshot and low signal-to-noise ratio environment is much higher than that of Root Multiple Signal Classification algorithm (Root-MUSIC), and this method also achieves the higher estimation performance and efficiency with lower complexity cost compared to the one-dimensional matrix pencil algorithm.

Non-linearity Mitigation Method of Particulate Matter using Machine Learning Clustering Algorithms (기계학습 군집 알고리즘을 이용한 미세먼지 비선형성 완화방안)

  • Lee, Sang-gwon;Cho, Kyoung-woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.341-343
    • /
    • 2019
  • As the generation of high concentration particulate matter increases, much attention is focused on the prediction of particulate matter. Particulate matter refers to particulate matter less than $10{\mu}m$ diameter in the atmosphere and is affected by weather changes such as temperature, relative humidity and wind speed. Therefore, various studies have been conducted to analyze the correlation with weather information for particulate matter prediction. However, the nonlinear time series distribution of particulate matter increases the complexity of the prediction model and can lead to inaccurate predictions. In this paper, we try to mitigate the nonlinear characteristics of particulate matter by using cluster algorithm and classification algorithm of machine learning. The machine learning algorithms used are agglomerative clustering, density-based spatial clustering of applications with noise(DBSCAN).

  • PDF

A deep learning method for the automatic modulation recognition of received radio signals (수신된 전파신호의 자동 변조 인식을 위한 딥러닝 방법론)

  • Kim, Hanjin;Kim, Hyeockjin;Je, Junho;Kim, Kyungsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1275-1281
    • /
    • 2019
  • The automatic modulation recognition of a radio signal is a major task of an intelligent receiver, with various civilian and military applications. In this paper, we propose a method to recognize the modulation of radio signals in wireless communication based on the deep neural network. We classify the modulation pattern of radio signal by using the LSTM model, which can catch the long-term pattern for the sequential data as the input data of the deep neural network. The amplitude and phase of the modulated signal, the in-phase carrier, and the quadrature-phase carrier are used as input data in the LSTM model. In order to verify the performance of the proposed learning method, we use a large dataset for training and test, including the ten types of modulation signal under various signal-to-noise ratios.

A Study on the Establishment of ISAR Image Database Using Convolution Neural Networks Model (CNN 모델을 활용한 항공기 ISAR 영상 데이터베이스 구축에 관한 연구)

  • Jung, Seungho;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.21-31
    • /
    • 2020
  • NCTR(Non-Cooperative Target Recognition) refers to the function of radar to identify target on its own without support from other systems such as ELINT(ELectronic INTelligence). ISAR(Inverse Synthetic Aperture Radar) image is one of the representative methods of NCTR, but it is difficult to automatically classify the target without an identification database due to the significant changes in the image depending on the target's maneuver and location. In this study, we discuss how to build an identification database using simulation and deep-learning technique even when actual images are insufficient. To simulate ISAR images changing with various radar operating environment, A model that generates and learns images through the process named 'Perfect scattering image,' 'Lost scattering image' and 'JEM noise added image' is proposed. And the learning outcomes of this model show that not only simulation images of similar shapes but also actual ISAR images that were first entered can be classified.