• Title/Summary/Keyword: Noise Branch

Search Result 126, Processing Time 0.023 seconds

Implementation of Noise Predictive Maximum Likelihood Detector in High Density Perpendicular Magnetic Recording (고밀도 수직자기기록에서 잡음 예측 최대 유사도 시스템에 대한 검출기 구현)

  • 김성환;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.336-342
    • /
    • 2003
  • Noise predictive maximum likelihood(NPML) detector embeds noise prediction/whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This thesis random sequences are applied to linear channel. In perpendicular magnetic recording density KP=2.5, NP(121)ML and NP(1221)ML detection system which is based on a noise predictive PR-equalized signal are evaluated by the Performance through a computing simulation. Therefore, NPML systems are implemented and are verified by VHDL.

Sequential Decoding of Convolutional Codes with Universal Metric over Bursty-Noise Channel

  • Byunghyun Moon;Lee, Chaewook
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.2 no.2
    • /
    • pp.219-228
    • /
    • 1997
  • The Fano metric is the maximum likelihood decoding choice for convlutional code for binary symmetric channel. The Fano metric assumes that it has previous knowledge of channel error probability. However, the bit errors in real channel occur in bursts and the channel error probability can not be known exactly. Thus, the Fano metric is not the maximum likelihood choice for bursty-noise channel. In this paper universal metri which dose not require the previous knowlege of the channel transition probability is used for sequential decoding. It is shown that the complexity of the universal is much less than that of the Fano metric bursty-noise channel, since it is estimated on a branch by branch basis.

  • PDF

Initial Investigation on Consolidation with Adaptive Dynamic Threshold for ABR Multicast Connections in ATM Networks (비동기 전송모드 망의 점대다중점연결을 위한 적응동적임계치기반 병합알고리즘)

  • Shin, Soung-Wook;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.962-966
    • /
    • 2001
  • The major problem at a branch point for point-to-multipoint available bit rate(ABR) services in asynchronous transfer mode (ATM) networks is how to consolidate backward resource management(BRM) cells from each branch for a multicast connection. In this paper, we propose an efficient feedback consolidation algorithm based on an adaptive dynamic threshold(ADT) to eliminate the consolidation noise and the reduce the consolidation delay. The main idea of the ADT algorithm lies in that each branch point estimates the ABR traffic condition of the network through the virtual queue estimation and the transmission threshold of the queue level in branch points is adaptively controlled according to the estimation. Simulation results show that the proposed ADT algorithm can achieve a faster response in congestion status and a higher link utilization compared with the previous works.

  • PDF

A Study on Pressure Ripple of Axial Piston Pump using Branch Hose (분기관을 이용한 피스톤 펌프의 압력 맥동에 관한 연구)

  • Lee, Hong-Seon;Lim, Tae-Hyeong;Chun, Se-Young;Kwon, Soon-Kwang;Lee, Chang-Don;Yang, Soon-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.117-124
    • /
    • 2007
  • The pressure ripple in most hydraulic systems is the root cause of their noise and vibration. This paper reduced the pressure ripple using side branch hose for an axial piston pump applied to small excavator. First, in calculating open area, a new method using groove area of valve plate is proposed. Simulation model in AMESim environment is developed to verify proposed method, find effective length and diameter of branch hose. Finally, the comparisons with experiment results show that the proposed method is more effective than previous method in reducing the pressure ripple.

Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header (주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation (주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

Vibration Related Branch Line Fatigue Failure (분기관 진동에 의한 피로파괴)

  • 전형식;박보용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.113-124
    • /
    • 1990
  • Tap lines are small branch piping generally less than two inches in diameter. They typically branch off of header piping having a much larger diameter. An example of a common tap line is a 3/4 inch size high point vent or low point drain. Most tap lines have at least one valve near the header tap connection to provide isolation. Two valves are often required for double isolation. A light water reactor(LWR) nuclear power plant will have several hundred tap lines. These lines come in many sizes and shapes and serve numerous functions. A single process piping valve may have three different tap lines associated with it (figure 1). Table 1 delineates the different categories of tap lines. Vibration failures of tap lines are a common occurrence in all industrial plants including nuclear and fossil power plants. These types of failures constitute a significant percentage of all piping related failures. An unscheduled plant shutdown or outage resulting from the failure of a tap line decreases plant reliability and may have a detrimental effect on plant safety. Most tap line vibration failures can be avoided through the use of appropriate routing and support techniques. Standardized designs can be developed for use in a myriad of applications. These designs will not only minimize failures but will also reduce the necessary analysis and installation efforts.

  • PDF

Examination on High Vibration and Branch Vent Pipe's Failure of Complex Piping System Suppling Condensate-Water in Power Site (발전소 복수 공급 배관계의 고진동과 분기 배기배관의 절손 규명)

  • Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.380-384
    • /
    • 2010
  • A disturbance flow at piping bands and discontinuous regions such as a valve, a header has a intense broadband internal pressure field and a sound field which are propagated through the piping system The fields becomes the source of a vibration of this piping system. Intense broadband disturbance flow at a discontinuous region such as elbows, valves or headers generates an acoustical pulsation. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the high vibration and the branch vent pipe's failure of condensate-water supply piping system due to the effect of acoustical pulsations by flow turbulence from the flow control valves of globe type in a power site.

  • PDF

New Analysis on the Generalization of SC Systems for the Reception of M-ary Signals over Nakagami Fading Channels

  • Kim Hong-Chul;Kim Chang-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.190-196
    • /
    • 2004
  • An alternative solution to the problem of obtaining acceptable performances on a fading channel is the diversity technique, which is widely used to combat the fading effects of time-variant channels. The symbol error probability of M-ary DPSK(MDPSK), PSK(MPSK) and QAM(MQAM) systems using 2 branches from the branch with the largest signal-to-noise ratio(SNR) at the output of L-branch selection combining(SC), i.e., SC2 in frequency- nonselective slow Nakagami fading channels with an additive white Gaussian noise(AWGN) is derived theoretically. These performance evaluations allow designers to determine M-ary modulation methods for Nakagami fading channels.

Further Analysis Performance on the Generalization of SC for the Reception of M-ary Signals on Wireless Fading Channels

  • Na, Seung-Kwan;Kim, Chang-Hwan;Jin, Yong-Ok
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • An alternative solution to the problem of obtaining acceptable performances on a fading channel is the diversity technique, which is widely used to combat the fading effects of time-variant channels. The symbol error probability of M-ary DPSK (MDPSK), PSK (MPSK) and QAM (MQAM) systems using 2 branches from the branch with the largest signal-to-noise ratio(SNR) at the output of L-branch selection combining(SC), i.e., SC2 in frequency-nonselective slow Nakagami fading channels with an additive white Gaussian noise(AWGN) is derived theoretically. These performance evaluations allow designers to determine M-ary modulation methods against Nakagami fading channels.