• Title/Summary/Keyword: Noise Annoyance Scale

Search Result 22, Processing Time 0.015 seconds

Questionnaire Study Conducted Around Gimpo International Airport by Using THI - Comparison with the Responses of the Residents at Gimpo and Futenma, Okinawa - (THI를 이용한 항공기 소음이 주민 건강상태에 미치는 영향 연구 - 김포공항과 오키나와 Futenma 공항 주변 주민들에 대한 비교 -)

  • Son, Jin-Hee;Lee, Kun;Lee, Seung-Wook;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.624-631
    • /
    • 2008
  • This study evaluates the impact of aircraft noise on people's health using the Todai health index(THI). A questionnaire survey was conducted in the vicinity of Gimpo International Airport in Seoul, South Korea, from August 8th to September 9th, 2005. The survey area was divided into three groups based on different aircraft noise levels : area (1) for $80{\sim}85$ WECPNL, area (2) for $75{\sim}80$ WECPNL and area (3) for less than 75 WECPNL. In each area, approximately 200 respondents were sampled. Twelve scale scores of THI are converted to dichotomous variables based on scale scores of 90 percentile value or 10 percentile value in the control group. Logistic regression analysis taking twelve scores converted as the dependent variables and WECPNL(area), age, gender as the independent variables is conducted. Significant dose-response relationships are found in the scale of MOUT, DEPR, NERV, LIFE. Factor analysis was carried out and 2 factors are extracted. Those two factors might be called the "somatic factor" and the "mental factor". The dose-response relationship between two factors and noise seems to be unclear. Unexpectedly the odds ratio of the menatl factor in area (2), where the noise exposure level is lower than that of the area (1), is the highest and the annoyance in this area is also higher than area (1).

Low Frequency Noise and It's Psychological Effects

  • Eom, Jin-Sup;Kim, Sook-Hee;Jung, Sung-Soo;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • Objective: This entire study has two parts. Study I aimed to develop a psychological assessment scale and the study II aimed to investigate the effects of LFN (low frequency noise) on the psychological responses in humans, using the scale developed in the study I. Background: LFN is known to have a negative impact on the functioning of humans. The negative impact of LFN can be categorized into two major areas of functioning of humans, physiological and psychological areas of functioning. The physiological impact can cause abnormalities in threshold, balancing and/or vestibular system, cardiovascular system and, hormone changes. Psychological functioning includes cognition, communication, mental health, and annoyance. Method: 182 college students participated in the study I in development of a psychological assessment scale and 42 paid volunteers participated in the study II to measure psychological responses. The LFN stimuli consisted of 12 different pure tones and 12 different 1 octave-band white noises and each stimulus had 4 different frequencies and 3 different sounds pressure levels. Results: We developed the psychological assessment scale consisting of 17 items with 3 dimensions of psychological responses (i.e., perceived physical, perceived physiological, and emotional responses). The main findings of LFN on the responses were as follows: 1. Perceived psychological responses showed a linear relation with SPL (sound pressure level), that is the higher the SPL is, the higher the negative psychological responses were. 2. Psychological responses showed quadric relations with SPL in general. 3. More negative responses at 31.5Hz LFN than those of 63 and 125Hz were reported, which is deemed to be caused by perceived vibration by 31.5Hz. 'Perceived vibration' at 31.5Hz than those of other frequencies of LFN is deemed to have amplified the negative psychological response. Consequently there found different effects of low frequency noise with different frequencies and intensity (SPL) on multiple psychological responses. Conclusion: Three dimensions of psychological responses drawn in regard to this study differed from others in the frequencies and SLP of LFN. Negative psychological responses are deemed to be differently affected by the frequency, SPL of the LFN and 'feel vibration' induced by the LFN. Application: The psychological scale from our study can be applied in quantitative psychological measurement of LFN at home or industrial environment. In addition, it can also help design systems to block LFN to provide optimal conditions if used the study outcome, .i.e., the relations between physical and psychological responses of LFN.