• Title/Summary/Keyword: Noetherian domains

Search Result 22, Processing Time 0.014 seconds

NOETHERIAN RINGS OF KRULL DIMENSION 2

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.1017-1023
    • /
    • 2010
  • We prove that a maximal ideal M of D[x] has two generators and is of the form where p is an irreducible element in a PID D having infinitely many nonassociate irreducible elements and q(x) is an irreducible non-constant polynomial in D[x]. Moreover, we find how minimal generators of maximal ideals of a polynomial ring D[x] over a DVR D consist of and how many generators those maximal ideals have.

MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Cho, Young-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.117-119
    • /
    • 1985
  • Let R be a commutative noetherian ring with 1.neq.0, denoting by .nu.(I) the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in n>0 variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that .nu.(M $A_{M}$).leq..nu.(M).leq..nu.(M $A_{M}$)+1. It is well known that the lower bound is not always satisfied, and the most classical examples occur in nonfactional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained. In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that .nu.(M)=.nu.(M $A_{M}$) if M.cap.R=p is a maximal ideal or $A_{M}$ (equivalently $R_{p}$) is not regular or n>1. Hence the problem of determining whether .nu.(M)=.nu.(M $A_{M}$) can be studied when p is not maximal, $A_{M}$ is regular and n=1. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when n=1 and R is a regular local ring (hence $A_{M}$ is regular)./ is regular).

  • PDF