• Title/Summary/Keyword: Noerok

Search Result 13, Processing Time 0.021 seconds

A Study on the Physical Properties of Seokrok and Noerok Used as Green Pigment (녹색안료로 사용되는 석록과 뇌록의 물리적 특성 연구)

  • Park, Ju Hyun;Jeong, Hye Young;Go, In Hee;Jeong, Sir Lin;Jo, A Hyeon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.429-441
    • /
    • 2015
  • The purpose of this study is to analyse the properties of Seokrok and Noerok that are used for restoration of heritage and arts. Malachite is main constituent mineral for Seokrok and Celadonite is Main component of Noerok. To evaluate the physical properties of pigment, A,B-class Seokrok and heated Seokrok that are sold in market were selected. To compare this results, Noerok sold in Japan were studied. In addition, we studied the pigments of Noerok. The heat treatment had no significant effect on the physical properties, except for the color-difference. The color-difference of Seokrok is larger than that of the Noerok sold in Japan. The $a^*$ values of Seokrok specimens are horizontal distribution, so it will expand the coloring ranges. The properties that are chromaticity, specific gravity and oil-absorption of Noerok are different from Seokrok. Noerok is suggested that achromatic color because the values of $a^*$ located near zero. Specific gravity of Noerok is smaller than Seokrok, but oil-absorption is larger twice. Noerok and Amnok, although ingredients are different, it is possible to use alternative because of similar physical characteristics. The result from this study expects to be used as useful referencing data for conservation and restoration of cultural heritage and understanding phenomena of the properties.

A Study on the Various Noerok from Janggi-myeon, Pohang (포항 장기면 일대에 산출되는 뇌록의 다양성 연구)

  • Mun, Seong Woo;Kim, Jae Hwan;Kong, Dal-Yong;Moon, Dong Hyeok;Jeong, Hye Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.195-205
    • /
    • 2018
  • Noerok is a green pigment made of mineral used the Gachil(priming coat) of wooden architecture in Chosun Dynasty era. It has been reported that various Noerok are discovered in Janggimyeon, Pohang. In this study, The Noerok from two places is compared and discussed. Noerok in the two places has blulsh-green to green color, and it is similar to their occurrences on fracture filling, vein and dike on outcrop. However, there are differences between two sites according to its petrological feature, mineral composition and geochemistry. While the Noeseongsan sample is mostly celadonite, Gwangjeongsan samples are characterized by celadonite with varying contents of cristobalite, tridymite, feldspar, along with some vitrified contents. In terms of major elements, the amount of $Al_2O_3$, $Fe_2O_3$, MgO and $K_2O$ decreases linearly with increasing $SiO_2$, whereas $Fe_2O_3$ is linearly proportional to MgO. In summary, Noerok in the study areas can be classified into 4 types (type 1, type 2, type 3-1, type 3-2) base on color, mineral composition, elemental composition, and vitrification grade.

Mineralogical Characteristic Changes of Noerok Occurred from Noeseong Mountain, a Raw Material for Pigment, Depending on its Firing Process (안료 원료인 뇌성산 산출 뇌록의 소성에 따른 광물학적 특성 변화)

  • Lee, Jang Jon;Kim, Jae Hwan;Han, Min Su
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Noerok ia a green pigment used in Joseon dynasty, and its main usage was for forming foundation layers of Dancheong, the ornamental paintings on the surface of traditional buildings in Korea, such as the Daeung-jeon(main hall) of Bulguk-sa temple. In this research, we investigated the mineralogical characteristic changes of Noerok, a traditional Korean pigment, depending on its firing temperature. The Noerok that we experimented on was mined from Noeseong Mountain, Pohang where it is locally reserved. The major composition mineral is Celadonite, and the main constituent elements are Fe, Si, K and Mg, that refers to the existence of Fe-rich mica. As a result of phased firing experiment from $105^{\circ}C$ to $1000^{\circ}C$, the color was changed from green to pale green, then to brown, and finally to red in order. In the thermal analysis, endothermic reaction induced by the dehydration of crystalline water was confirmed at around $616^{\circ}C$. In the mineralogical change, the crystal surface [($11{\bar{1}}$) and ($02{\bar{1}}$)] of the mineral collapsed at temperatures above $600^{\circ}C$, and iron oxide was formed at $1000^{\circ}C$ or higher. Therefore, it is estimated that the crystallization temperature of Noerok is below $600^{\circ}C$, and it is also considered that it has undergone the alteration phase up to stage I, based on the presence of only a celadonite.

Petrological Study on Basaltic Rocks of the Daljeon-ri Columnar Joint and the Noeseongsan Noerok Site in Pohang, Korea (포항 달전리 주상절리와 뇌성산 뇌록산지의 현무암 비교 분석)

  • Kim, Jae hwan;Yu, Yeong-wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Moon, Dong Hyeok;Kong, Dal-Yong
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • The basaltic rocks of Daljeon-ri columnar joint (Natural Monuments # 415) and Noeseongsan Noerok site (Natural Monuments # 547) were analysed in order to understand basalt types of two areas. The basaltic rocks of the Pohang Daljeon-ri columnar joint show a typical porphyritic texture containing phenocrysts (olivine and clinopyroxene) and groundmasses composed of clinopyroxene, plagioclase, and opaque minerals,. In contrast, basaltic rocks of Noeseongsan Noerok are characterized by fine-grained groundmass with large phenocrysts of plagioclase. Other analysis such as magnetic susceptibility, X-ray diffraction and X-ray fluorescence also support the petrological differences of two basalt rocks. The Daljeon-ri basaltic rocks are plotted on phonotephrite volcanic rocks of alkaline series in TAS(total alkali silica), and on within plate basalt in Zr-Ti diagram. The Noeseongsan basalts, on the other hand, are plotted on basaltic andesite to andesite of sub-alkaline series in TAS, and on volcanic arc basalt in Zr-Ti diagram. These results indicate that the original mantle materials between two basalt rocks were different each other, which probably originated from the change of a tectonic setting in the southeastern Korean peninsula during the Miocene.

Monitoring the Change of Physical Properties of Traditional Dancheong Pigments (전통 단청안료 표면의 물리적 특성 변화 모니터링)

  • Kim, Ji Sun;Jeong, Hye Young;Byun, Doo-Jin;Yoo, Min Jae;Kim, Myoung Nam;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.549-561
    • /
    • 2020
  • This study aimed to assess the performance and life of nine natural mineral dancheong pigments: Seokganju, Jinsa, Hwangto, Jahwang, Wunghwang, Seokrok, Noerok, Seokcheong, and Baekto. The design of the accelerated weathering test considered the domestic climate characteristics and the location of Dancheong. Outdoor weathering tests were conducted at the Research Institute in Daejeon and the Sungnyemun Gate in Seoul to confirm the field reproducibility of the accelerated weathering test. Monitoring of the physical changes in pigments through accelerated and outdoor weathering tests are based on ultraviolet exposure dose. Despite small cracks at the beginning of the tests, the monitoring showed that Seokganju and Baekto had no marked physical changes, but the surface cracks of Jinsa and Seorok continue to expand. Hwangto and Noerok were marked with water or were resin stained, and the particles of Jahwang, Wunghwang, and Seokcheong had lost their luster. Despite the absolute difference in color change in each test, the final chromaticity change patterns of pigments were similar in that the color difference between Baekto and Noerok was below five, and Jina was above 28. The physical and surface color pigment changes were more concentrated in outdoor weathering tests than in accelerated tests, and the Seoul site was more intense than the Daejeon site. This is because outdoor weathering tests are exposed to severe variations of temperature and moisture or deposition of dust particles and, in the case of Seoul, the site is more exposed to the external environment than the Daejeon site.

Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea (국내 녹색-청색계열 무기안료의 산출과 광물학적 특성)

  • Jeong, Gi Young;Cho, Hyen Goo;Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • Traditional inorganic pigments applied to dancheong, buddhist painting, and wall painting were produced from natural minerals which were later replaced by synthetic pigments, resulting in the loss of the recipe to prepare mineral pigments. This study examined the domestic occurrence and mineralogical characteristics of green and blue mineral pigments required for the conservation of cultural heritage. Cuprous green-blue mineral pigments were found as the weathering products of waste dumps and ores of abandoned Cu-Pb-Zn sulfide mines. Mineralogical analyses using X-ray diffraction and scanning electron microscopy identified diverse hydrous copper sulfate pigments of green (brochantite and devilline) and blue color (linarite, bechererite, and schulenbergite) with minor green pigments of antlerite and atacamite commonly associated with cerussite, smithsonite, anglesite, and cuprite. Noerok, a green silicate pigment, replaced the fractured basalt lava. Celadonite was responsible for the green color of Noerok, closely associated with opal in varying ratio. Glauconite, green silicate pigment, was identified in the Yellow Sea sediments. Malachite and azurite, the most important green and blue pigments of Korean cultural heritage, were not identified in this study.

Analysis of Cow Hide Glue Binder in Traditional Dancheong by Enzyme-linked Immunosorbent Assay

  • Yu, Jia;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.363-372
    • /
    • 2019
  • Animal glue has been used as a binder in Dancheong since the Joseon dynasty. Binders play an important role in determining the physical characteristics of a painting layer. The analysis of binders can be used to identify the materials and techniques used in traditional Dancheong. Binders can be investigated using physicochemical component analyses methods such as gas chromatography/mass spectrometry, pyrolysis-gas chromatography/mass spectrometry, and fourier transform infrared spectroscopy, but the detection characteristics vary depending on the degradation properties of the pigment and binder. Therefore, cross-validation using a combination of physicochemical analysis and enzyme immunoassay is used to increase the reliability of the results. In this study, we present an enzyme-linked immunosorbent assay (ELISA) as an example of an enzyme immunoassay as a method for analyzing animal glue, a traditional binder used in Korea. The applicability of ELISA was tested using commercial animal glue, in addition to animal glue produced using a variety of extraction conditions. The animal glue was analyzed in a Noerok-additionally coated-replica sample to evaluate the possibility of analyzing the animal glue in a paint layer mixed with pigment. Based on the results, we performed an assay on the use of animal glue in the Dancheong sample of the temples of the Joseon dynasty, that are estimated to have been built in the 17th century.

Mineral Compositions of Korean Dancheong Pigment Products using Quantitative XRD (정량 X-선 회절분석을 이용한 국내시판 단청안료의 광물조성 연구)

  • Moon, Dong Hyeok;Han, Min Su;Jeong, Hye Young;Go, In Hee;Cho, Hyen Goo
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.403-416
    • /
    • 2016
  • Mineral composition and content of 22 Korean Dancheong pigment products were obtained by Rietveld quantitative analysis. Jubosa, Hwang, Seokrok, Seokcheong and Hobun consist of pure cinnabar, orpiment, malachite, azurite and calcite (or aragonite), respectively. Whereas Seokganju, Hwangto, Noerok, Lapis lazuli, Baekto and Cockie hobun mainly consist of hematite, goethite, celadonite, lazurite, kaolin mineral and portlandite, respectively. And they all consist of soil minerals (quartz, feldspar, sericite and vermiculite) and filler minerals in the industry field (calcite, gypsum and anhydrite) at a different content. Quantitative XRD proved more useful method to determined exact mineral composition and content than chemical or microscopical data. If this method utilize for specification of natural pigment product, it is considered to be applicable in restoration technology and conservation science field.

A Study of Weather Resistance on Dancheong Ground Treatment of Tranditional Wooden Building in Korea (한국 목조건축물 단청 바탕처리에 대한 내후성 연구)

  • Kim, Young Kyun;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.480-493
    • /
    • 2019
  • In this study, the method for processing glue and glue-alum sizing from the dancheong ground treatment was evaluated with respect to weather resistance, and its effect on the conservation of dancheong was analyzed. Viscosity and pH of the glue and glue-alum specimen were measured and classified into three categories(none layer, glue layer, and glue-alum layer), which were further classified according to low concentration(four times for 2%) and high concentration(once for 10%). The base layer formation was subsequently classified into three categories based on pigment adoption, namely, Noerok(celadonite), Seokganju(terra rossa), and Jangdan(red lead). The completed specimen was subjected to a changing-environment experiment for evaluating weather resistance and observing the surface. Color variations were analyzed before and after the experiment. The results indicate that glue-alum sizing comprising 5% alum or 7% alum has strong acidity that can affect the life of dancheong, and the high level of 7% alum makes it difficult to create a solid coating layer. After ultraviolet irradiation, the specimen with 7% alum changes its color to yellow. Furthermore, after moisture absorption and drying, cracks can be observed on the entire specimen surface that corroborate the physical change. Additionally, gas-based corrosion causes marginal surface changes. Hence, the formation of a stable coating layer can be achieved by incorporating a low concentration glue solution that is almost neutral, and the application of glue-alum sizing having 2% concentration can aid in the conservation of dancheong.

Study on Traditional Multicolor, Dancheong in awareness by Dancheongjang (단청장(丹靑匠)이 인식하는 전통 단청 색상에 관한 조사 연구)

  • Jeong, Hye Young;Park, Ju Hyun;Go, In Hee;Kang, Yeong Seok
    • 보존과학연구
    • /
    • s.37
    • /
    • pp.27-41
    • /
    • 2016
  • This study surveyed color awareness and color systems according to pedigree(Ilseob, Woljoo, Hyegak, Manbong ect.) targeting Dancheongjang (craftsman) who has inherited Dancheong (traditional multicolor). From the survey of color awareness, standardized color system of 'traditional color' awareness by Dancheongjang is 'the color inherited by the master' and it was identified that there is the standardized color system in awareness and its standard is either same or similar to traditional Dancheong. Also, according to each period, colors of Dancheong have been changed, it was thought that change in color materials and preference had went with times. From eleven main colors of Dancheong, chromaticity materials which were preferred by Dancheongjang were analyzed by the faction of Dancheongjang and colors and it resulted in a variety of color ranges over all. In the case of Yangnok, Noerok, Juhong it showed a high deviation with a wide color range while there was a low deviation with a narrow color range in Hayeop, Daja, Seokganju. Through this study it was difficult to identify clear correlations and tendencies of color system by the faction of Dancheongjangs. This is judged to be a reflection of the subjective artistry of the members.

  • PDF