• Title/Summary/Keyword: Node-Disjoint

Search Result 61, Processing Time 0.042 seconds

An Application of Network Autocorrelation Model Utilizing Nodal Reliability (집합점의 신뢰성을 이용한 네트워크 자기상관 모델의 연구)

  • Kim, Young-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.492-507
    • /
    • 2008
  • Many classical network analysis methods approach networks in aspatial perspectives. Measuring network reliability and finding critical nodes in particular, the analyses consider only network connection topology ignoring spatial components in the network such as node attributes and edge distances. Using local network autocorrelation measure, this study handles the problem. By quantifying similarity or clustering of individual objects' attributes in space, local autocorrelation measures can indicate significance of individual nodes in a network. As an application, this study analyzed internet backbone networks in the United States using both classical disjoint product method and Getis-Ord local G statistics. In the process, two variables (population size and reliability) were applied as node attributes. The results showed that local network autocorrelation measures could provide local clusters of critical nodes enabling more empirical and realistic analysis particularly when research interests were local network ranges or impacts.

  • PDF

Cross-Layer Service Discovery Scheme for Hybrid Ad-hoc Networks (하이브리드 애드-혹 네트워크를 위한 크로스-레이어 서비스 검색 기법)

  • Kim, Moon-Jeong;Eom, Young-Ik
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.223-228
    • /
    • 2009
  • Efficient service discovery mechanism is a crucial feature for a hybrid ad-hoc network supporting extension of a wireless ad-hoc network to the Internet. We propose an efficient cross-layer service discovery mechanism using non-disjoint multi-path source routing protocol for hybrid ad-hoc networks. Our scheme has advantages of multi-path routing protocol and cross-layer service discovery. Intuitively, it is not difficult to imagine that the cross-layer service discovery mechanism could result in a decreased number of messages compared to the traditional approach for handling routing independently from service discovery. By simulation, we show that faster route recovery is possible by maintaining multiple routing paths in each node, and the route maintenance overhead can be reduced by limiting the number of multiple routing paths and by maintaining link/node non-disjoint multi-path.

Service Discovery Scheme for Wireless Ad-hoc Networks (무선 애드-혹 네트워크를 위한 효율적인 서비스 검색 기법)

  • Kim, Moon-Jeong;Lee, Dong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2008
  • Efficient service discovery mechanism is a crucial feature for the usability of a wireless ad-hoc network. A wireless ad-hoc network is a temporal network formed by a collection of wireless mobile nodes without the aid of any existing network infrastructure or centralized administration. We propose an efficient service discovery mechanism using non-disjoint multi-path routing protocol for a wireless ad-hoc network. Our scheme has advantages of not only multi-path routing protocol but also cross-layer service discovery. By simulation, we showed that faster route recovery is possible by maintaining multiple routing paths in each node, and the route maintenance overhead can be reduced by limiting the number of multiple routing paths and by maintaining link/node non-disjoint multi-path.

Constructing Algorithm for Optimal Edge-Disjoint Spanning Trees in Odd Interconnection Network $O_d$ (오드 연결망 $O_d$에서 에지 중복 없는 최적 스패닝 트리를 구성하는 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.429-436
    • /
    • 2009
  • Odd network was introduced as one model of graph theory. In [1], it was introduced as a class of fault-tolerant multiprocessor networks and analyzed so many useful properties such as simple routing algorithms, maximal fault tolerance, node axsjoint path, etc. In this paper, we sauw a construction algorithm of edge-axsjoint spanning trees in Odd network $O_d$. Also, we prove that edge-disjoint spanning tree generated by our algorithm is optimal edge-disjoint spanning tree.

A Novel Multi-Path Routing Algorithm Based on Clustering for Wireless Mesh Networks

  • Liu, Chun-Xiao;Zhang, Yan;Xu, E;Yang, Yu-Qiang;Zhao, Xu-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1256-1275
    • /
    • 2014
  • As one of the new self-organizing and self-configuration broadband networks, wireless mesh networks are being increasingly attractive. In order to solve the load balancing problem in wireless mesh networks, this paper proposes a novel multi-path routing algorithm based on clustering (Cluster_MMesh) for wireless mesh networks. In the clustering stage, on the basis of the maximum connectivity clustering algorithm and k-hop clustering algorithm, according to the idea of maximum connectivity, a new concept of node connectivity degree is proposed in this paper, which can make the selection of cluster head more simple and reasonable. While clustering, the node which has less expected load in the candidate border gateway node set will be selected as the border gateway node. In the multi-path routing establishment stage, we use the intra-clustering multi-path routing algorithm and inter-clustering multi-path routing algorithm to establish multi-path routing from the source node to the destination node. At last, in the traffic allocation stage, we will use the virtual disjoint multi-path model (Vdmp) to allocate the network traffic. Simulation results show that the Cluster_MMesh routing algorithm can help increase the packet delivery rate, reduce the average end to end delay, and improve the network performance.

Interference-Aware Multipath (IAM) Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

  • Mian Hammad Ullah;Choonhwa Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1314-1315
    • /
    • 2008
  • Recent research work has unearthed that multi-radio multi-channel wireless mesh networks offer considerable capacity gains over single-radio wireless mesh networks. In this paper, we present a new routing metric for multi-radio multi-channel wireless mesh networks. The goal of the metric is to choose multiple link/node disjoint paths between a source and destination node that, when used concomitantly, impart high end-to-end throughput. The proposed metric selects high fidelity paths that will produce elevated throughput with maximum fault tolerance.

Disjointed Multipath using Energy Efficient Face Routing in Wireless Sensor Networks (무선 센서 망에서 에너지 효율적인 페이스 라우팅을 활용한 분리된 다중 경로 방안)

  • Cho, Hyunchong;Kim, Cheonyong;Kim, Sangdae;Oh, Seungmin;Kim, Sang-Ha
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.116-121
    • /
    • 2017
  • In wireless sensor networks, the multipath prefers energy efficient routing method due to the characteristic of low-power sensor which uses geographic method to transmit data packet through information of the neighbor nodes. However, when multipath meets the routing fail area called hole area, path overlap problem can occur, resulting in failed maintenance of disjoint multipath. To solve this problem, multipath research studies have been performed to exploit the modeling and detouring method in routing fail area by keeping the disjoint multipath. However, in an energy point of view, additional method like modeling can lead to a lot of energy consumption of sensor node. Moreover, lots of energy consumption of sensor node can shorten the life span of sensor network. In this study, we proposed an energy efficient geographic routing by keeping the disjoint multipath in routing fail area. The proposed scheme exploited the face routing using the geographic recovery method without additional method like modeling.

Diameter, Fault Diameter and Average Distance between Two Nodes in Z-cube Network (Z-cube 네트워크의 직경, 고장직경과 정점간 평균거리)

  • Gwon, Gyeong-Hui;Lee, Gye-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.75-83
    • /
    • 1999
  • recently, a new hypercube-like interconnection network, the Z-cube, was proposed. The Z-cube retains most good topological properties, however, its node degree is 3/4 of hypercube's one. Considering hardware implementations, the Z-cube is a good alternative to the hypercube. In this paper, we obtained the diameter, fault diameter and the average distance between two nodes to evaluate the communication performance of the Z-cube. The recursive structure, the shortest path between two nodes I Z-cube and recurrence relation on the average distance were deduced, and node disjoint path was introduced. Although it is generally expected that the communication performance in an interconnection network with reduced node degree falls as much as that, this paper shows that the Z-cube's diameter is the same as the hypercube's one and the average distance between two nodes in Z-cube is about 1.125 times the average distance between two nodes in the hypercube and the fault diameter of Z-cube ranges approximately from 1.4times to 1.7times the fault diameter of the hypercube.

  • PDF

Energy-Efficient Routing Algorithm with Guaranteed Message Transmission Reliability for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 메시지 전송 신뢰도 보장 라우팅 알고리즘)

  • Baek, Jang-Woon;Seo, Dae-Wha;Nam, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.482-491
    • /
    • 2007
  • This paper proposes a k-disjoint-path routing algorithm that provides energy efficient and reliable message transmission in wireless sensor networks. The proposed algorithm sends messages through a single path without the occurrence of critical events. However, it sends through k disjoint paths(k>1) under the occurrence of critical events. The proposed algorithm detects the occurrence of critical events by monitoring changing data patterns, and calculates k from a well-defined fault model and the target-delivery ratio. Our simulations reveal that the proposed algorithm is more resilient to node failure than other routing algorithms, and it also decreases energy consumption and reduces the average delay much more than multi-path and path-repair algorithms.