• Title/Summary/Keyword: Node compression

Search Result 104, Processing Time 0.022 seconds

Adaptive Data Aggregation and Compression Scheme for Wireless Sensor Networks with Energy-Harvesting Nodes

  • Jeong, Semi;Kim, Hyeok;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • In this paper, we propose an adaptive data aggregation and compression scheme for wireless sensor networks with energy-harvesting nodes, which increases the amount of data arrived at the sink node by efficient use of the harvested energy. In energy-harvesting wireless sensor networks, sensor nodes can have more than necessary energy because they harvest energy from environments continuously. In the proposed scheme, when a node judges that there is surplus energy by estimating its residual energy, the node compresses and transmits the aggregated data so far. Conversely, if the residual energy is estimated to be depleted, the node turns off its transceiver and collects only its own sensory data to reduce its energy consumption. As a result, this scheme increases the amount of data collected at the sink node by preventing the blackout of relay nodes and facilitating data transmission. Through simulation, we show that the proposed scheme suppresses the occurrence of blackout nodes and collect the largest amount of data at the sink node compared to previous schemes.

Dynamic Sensing-Rate Control Scheme Using a Selective Data-Compression for Energy-Harvesting Wireless Sensor Networks (에너지 수집형 무선 센서 네트워크에서 선택적 데이터 압축을 통한 동적 센싱 주기 제어 기법)

  • Yoon, Ikjune;Yi, Jun Min;Jeong, Semi;Jeon, Joonmin;Noh, Dong Kun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • In wireless sensor networks, increasing the sensing rate of each node to improve the data accuracy usually incurs a decrease of network lifetime. In this study, an energy-adaptive data compression scheme is proposed to efficiently control the sensing rate in an energy-harvesting wireless sensor network (WSN). In the proposed scheme, by utilizing the surplus energy effectively for the data compression, each node can increase the sensing rate without any rise of blackout time. Simulation result verifies that the proposed scheme gathers more amount of sensory data per unit time with lower number of blackout nodes than the other compression schemes for WSN.

On the Coastline Date Compression in Digital Chart Selecting Conspicuous Coast Positiona as Node Points (현저한 해안 위치를 절점으로 선정하는 디지털 해도에서의 해안선 데이터 압축)

  • 임정빈;고광섭;최낙현
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • Since the digital chart consists of a large number of points, the effective method for the coastline data compression(CDC), storing the data compactly and reproducting the coastline feature accurately, is important. In the CDC, the key technique is to determine the optimal positions as node points in given coastlines. In this paper, a new CDC method, selecting node points with conspicuous coast positions in the view point on navigation and adopting spline interpolation to the nodes partly, is proposed. Using the northern part of KEOJE-DO coastline in Korean chart No.204, CDC experiments are carrie out with various compression ratio. The results fro the influence of coastline shape according to various CDC methods are discussed and presented.

  • PDF

Energy-Aware Data Compression and Transmission Range Control Scheme for Energy-Harvesting Wireless Sensor Networks (에너지 수집형 무선 센서 네트워크를 위한 에너지 적응형 데이터 압축 및 전송 범위 결정 기법)

  • Yi, Jun Min;Oh, Eomji;Noh, Dong Kun;Yoon, Ikjune
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.243-249
    • /
    • 2016
  • Energy-harvesting nodes in wireless sensor networks(WSNs) can be exhausted due to a heavy workload even though they can harvest energy from their environment. On contrast, they can sometimes fully charged, thus waste the harvested energy due to the limited battery-capacity. In order to utilize the harvested energy efficiently, we introduce a selective data compression and transmission range control scheme for energy-harvesting nodes. In this scheme, if the residual energy of a node is expected to run over the battery capacity, the node spends the surplus energy to exploit the data compression or the transmission range expansion; these operations can reduce the burden of intermediate nodes at the expanse of its own energy. Otherwise, the node performs only basic operations such as sensing or transmitting so as to avoid its blackout time. Simulation result verifies that the proposed scheme gathers more data with fewer number of blackout nodes than other schemes by consuming energy efficiently.

Sensing and Compression Rate Selection with Energy-Allocation in Solar-Powered Wireless Sensor Networks

  • Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2017
  • Solar-powered wireless sensor nodes can use extra energy to obtain additional data to increase the precision. However, if the amount of data sensed is increased indiscriminately, the overhead of relay nodes may increase, and their energy may be exhausted. In this paper, we introduce a sensing and compression rate selection scheme to increase the amount of data obtained while preventing energy exhaustion. In this scheme, the neighbor nodes of the sink node determine the limit of data to be transmitted according to the allocated energy and their descendant nodes, and the other nodes select a compression algorithm appropriate to the allocated energy and the limitation of data to be transmitted. A simulation result verifies that the proposed scheme gathers more data with a lower number of blackout nodes than other schemes. We also found that it adapts better to changes in node density and the amount of energy harvested.

Energy-Aware Video Coding Selection for Solar-Powered Wireless Video Sensor Networks

  • Yi, Jun Min;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.101-108
    • /
    • 2017
  • A wireless image sensor node collecting image data for environmental monitoring or surveillance requires a large amount of energy to transmit the huge amount of video data. Even though solar energy can be used to overcome the energy constraint, since the collected energy is also limited, an efficient energy management scheme for transmitting a large amount of video data is needed. In this paper, we propose a method to reduce the number of blackout nodes and increase the amount of gathered data by selecting an appropriate video coding method according to the energy condition of the node in a solar-powered wireless video sensor network. This scheme allocates the amount of energy that can be used over time in order to seamlessly collect data regardless of night or day, and selects a high compression coding method when the allocated energy is large and a low compression coding when the quota is low. Thereby, it reduces the blackout of the relay node and increases the amount of data obtained at the sink node by allowing the data to be transmitted continuously. Also, if the energy is lower than operating normaly, the frame rate is adjusted to prevent the energy exhaustion of nodes. Simulation results show that the proposed scheme suppresses the energy exhaustion of the relay node and collects more data than other schemes.

A Cache-Conscious Compression Index Based on the Level of Compression Locality (압축 지역성 수준에 기반한 캐쉬 인식 압축 색인)

  • Kim, Won-Sik;Yoo, Jae-Jun;Lee, Jin-Soo;Han, Wook-Shin
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1023-1043
    • /
    • 2010
  • As main memory get cheaper, it becomes increasingly affordable to load entire index of DBMS and to access the index. Since speed gap between CPU and main memory is growing bigger, many researches to reduce a cost of main memory access are under the progress. As one of those, cache conscious trees can reduce the cost of main memory access. Since cache conscious trees reduce the number of cache miss by compressing data in node, cache conscious trees can reduce the cost of main memory. Existing cache conscious trees use only fixed one compression technique without consideration of properties of data in node. First, this paper proposes the DC-tree that uses various compression techniques and change data layout in a node according to properties of data in order to reduce cache miss. Second, this paper proposes the level of compression locality that describes properties of data in node by formula. Third, this paper proposes Forced Partial Decomposition (FPD) that reduces the nutter of cache miss. DC-trees outperform 1.7X than B+-tree, 1.5X than simple prefix B+-tree, and 1.3X than pkB-tree, in terms of the number of cache misses. Since proposed DC-trees can be adopted in commercial main memory database system, we believe that DC-trees are practical result.

Segmented Douglas-Peucker Algorithm Based on the Node Importance

  • Wang, Xiaofei;Yang, Wei;Liu, Yan;Sun, Rui;Hu, Jun;Yang, Longcheng;Hou, Boyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1562-1578
    • /
    • 2020
  • Vector data compression algorithm can meet requirements of different levels and scales by reducing the data amount of vector graphics, so as to reduce the transmission, processing time and storage overhead of data. In view of the fact that large threshold leading to comparatively large error in Douglas-Peucker vector data compression algorithm, which has difficulty in maintaining the uncertainty of shape features and threshold selection, a segmented Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the vertical chord ratio as the main feature to detect and extract the critical points with large contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the radial distance constraint, it selects the maximum point as the critical point, and introduces the threshold related to the scale to merge and adjust the critical points, so as to realize local feature extraction between two critical points to meet the requirements in accuracy. Finally, through a large number of different vector data sets, the improved algorithm is analyzed and evaluated from qualitative and quantitative aspects. Experimental results indicate that the improved vector data compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression error, results simplification and time efficiency.

Delayed Reduction Algorithms of DJ Graph using Path Compression (경로 압축을 이용한 DJ 그래프의 지연 감축 알고리즘)

  • Sim, Son-Kwon;Ahn, Heui-Hak
    • The KIPS Transactions:PartA
    • /
    • v.9A no.2
    • /
    • pp.171-180
    • /
    • 2002
  • The effective and accurate data flow problem analysis uses the dominator tree and DJ graphs. The data flow problem solving is to safely reduce the flow graph to the dominator tree. The flow graph replaces a parse tree and used to accurately reduce either reducible or irreducible flow graph to the dominator tree. In this paper, in order to utilize Tarian's path compress algorithm, the Top node finding algorithm is suggested and the existing delay reduction algorithm is improved using Path compression. The delayed reduction a1gorithm using path compression actually compresses the pathway of the dominator tree by hoisting the node while reducing to delay the DJ graph. Realty, the suggested algorithm had hoisted nodes in 22% and had compressed path in 20%. The compressed dominator tree makes it possible to analyze the effective data flow analysis and brings the improved effect for the complexity of code optimization process with the node hoisting effect of code optimization process.

Efficient 2D Smoke Synthesis with Cartesian Coordinates System Based Node Compression (데카르트 좌표계 기반 노드 압축을 이용한 효율적인 2차원 연기 합성)

  • Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.659-660
    • /
    • 2021
  • 본 논문에서는 데카르트 좌표계 기반으로 노드를 압축함으로써 SR(Super-resolution) 기반 연기 합성을 효율적으로 처리할 수 있는 방법을 제안한다. 제안하는 방법은 다운 스케일링과 이진화를 통하여 연기 시뮬레이션의 계산 공간을 효율적으로 줄이고, 데카르트 좌표계 축을 기준으로 쿼드트리의 말단 노드를 압축함으로써 네트워크의 입력으로 전달하는 데이터 개수를 줄인다. 학습에 사용된 데이터는 COCO 2017 데이터셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과에 비해 네트워크로 전달해야 하는 데이터가 압축되어 개수가 줄어드는 결과를 얻었으며, 그로 인해 네트워크 단계에서 필요한 I/O 과정을 효율적으로 처리할 수 있게 되었다.

  • PDF