• Title/Summary/Keyword: Node Energy

Search Result 1,276, Processing Time 0.026 seconds

Estimate algorithm for efficient sensing mobility of node in wireless sensor networks (센서 네트워크에서 노드의 효율적인 센싱 이동성을 위한 예측 알고리즘)

  • Jung, Sung-Jae;You, Byung-Hun;Rhee, Byung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.711-712
    • /
    • 2006
  • In this paper, we propose algorithm that improves energy efficiency of sensor node. That is, sensor node suggests algorithm that minimizes unnecessary surrounding feeler, and when passes information to neighborhood node, transmit forecasting position of node.

  • PDF

An Energy Efficient Localized Topology Control Algorithm for Wireless Multihop Networks

  • Shang, Dezhong;Zhang, Baoxian;Yao, Zheng;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • Localized topology control is attractive for obtaining reduced network graphs with desirable features such as sparser connectivity and reduced transmit powers. In this paper, we focus on studying how to prolong network lifetime in the context of localized topology control for wireless multi-hop networks. For this purpose, we propose an energy efficient localized topology control algorithm. In our algorithm, each node is required to maintain its one-hop neighborhood topology. In order to achieve long network lifetime, we introduce a new metric for characterizing the energy criticality status of each link in the network. Each node independently builds a local energy-efficient spanning tree for finding a reduced neighbor set while maximally avoiding using energy-critical links in its neighborhood for the local spanning tree construction. We present the detailed design description of our algorithm. The computational complexity of the proposed algorithm is deduced to be O(mlog n), where m and n represent the number of links and nodes in a node's one-hop neighborhood, respectively. Simulation results show that our algorithm significantly outperforms existing work in terms of network lifetime.

A study on wireless power generation for marine information acquisition using EAP actuator (EAP 액추에이터를 이용한 해양 정보 취득용 무선 전원 발생에 관한 연구)

  • Jeong, Eun-A;Lee, Kee-Yoon;Jeong, Hwang-Hun;Yun, So-Nam
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.49-53
    • /
    • 2011
  • This study concerns about wireless power generation that uses the energy harvester with EAP actuator. The UWSN(Underwater Wireless Sensor Network) has been considered many times by many researches. Because the information of underwater is getting important to secure the resource or to predict the meteorological phenomena. But the sensor node in the UWSN is driven by the acoustic wave to communicate with other sensor node. And this acoustic wave usually spends a 100 times energy than the RF(Radio Frequency) wave due to transfermation medium(sea water). Therefore the power source of the sensor node is very important that is needed to improve in the UWSN. For this purpose, the energy harvester is made by the acrylic elastomer in this study. And the electrode is modified with an aluminum impurity to improve the efficiency of energy harvester. After that, the modified energy harvester is experimented to confirm the improvement of the energy efficiency.

Centralized Clustering Routing Based on Improved Sine Cosine Algorithm and Energy Balance in WSNs

  • Xiaoling, Guo;Xinghua, Sun;Ling, Li;Renjie, Wu;Meng, Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.17-32
    • /
    • 2023
  • Centralized hierarchical routing protocols are often used to solve the problems of uneven energy consumption and short network life in wireless sensor networks (WSNs). Clustering and cluster head election have become the focuses of WSNs. In this paper, an energy balanced clustering routing algorithm optimized by sine cosine algorithm (SCA) is proposed. Firstly, optimal cluster head number per round is determined according to surviving node, and the candidate cluster head set is formed by selecting high-energy node. Secondly, a random population with a certain scale is constructed to represent a group of cluster head selection scheme, and fitness function is designed according to inter-cluster distance. Thirdly, the SCA algorithm is improved by using monotone decreasing convex function, and then a certain number of iterations are carried out to select a group of individuals with the minimum fitness function value. From simulation experiments, the process from the first death node to 80% only needs about 30 rounds. This improved algorithm balances the energy consumption among nodes and avoids premature death of some nodes. And it greatly improves the energy utilization and extends the effective life of the whole network.

GRID BASED ENERGY EFFICIENT AND SECURED DATA TRANSACTION FOR CLOUD ASSISTED WSN-IOT

  • L. SASIREGA;C. SHANTHI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.95-105
    • /
    • 2023
  • To make the network energy efficient and to protect the network from malignant user's energy efficient grid based secret key sharing scheme is proposed. The cost function is evaluated to select the optimal nodes for carrying out the data transaction process. The network is split into equal number of grids and each grid is placed with certain number of nodes. The node cost function is estimated for all the nodes present in the network. Once the optimal energy proficient nodes are selected then the data transaction process is carried out in a secured way using malicious nodes filtration process. Therefore, the message is transmitted in a secret sharing method to the end user and this process makes the network more efficient. The proposed work is evaluated in network simulated and the performance of the work are analysed in terms of energy, delay, packet delivery ratio, and false detection ratio. From the result, we observed that the work outperforms the other works and achieves better energy and reduced packet rate.

Intelligent Clustering Mechanism for Efficient Energy Management in Sensor Network (센서 네트워크에서의 효율적 에너지 관리를 위한 지능형 클러스터링 기법)

  • Seo, Sung-Yun;Jung, Won-Soo;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.40-48
    • /
    • 2007
  • MANET constructs a network that is free and independent between sensor nodes without infrastructure. Also, there are a lot of difficulties to manage data process, control etc.. back efficiently from change of topology by transfer of sensor node that compose network. Especially, because each sensor node must consider mobility certainly, problem about energy use happens. To solve these problem, mechanisms that compose cluster of cluster header and hierarchic structure between member were suggested. However, accompanies inefficient energy consumption because sensing power level of sensor node is fixed and brings energy imbalance of sensor network and shortening of survival time. In this paper, I suggested intelligent clustering mechanism for efficient energy management to solve these problem of existent Clustering mechanism. Proposed mechanism corresponds fast in network topology change by transfer of sensor node, and compares in existent mechanism in circumstance that require serial sensing and brings elevation survival time of sensor node.Please put the abstract of paper here.

An Efficient Neighbor Discovery Method for Cooperative Video Surveillance Services in Internet of Vehicles (차량 인터넷에서 협업 비디오 감시 서비스를 위한 효율적인 이웃 발견 방법)

  • Park, Taekeun;Lee, Suk-Kyoon
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.97-109
    • /
    • 2016
  • The rapid deployment of millions of mobile sensors and smart devices has resulted in high demand for opportunistic encounter-based networking. For the cooperative video surveillance of dashboard cameras in nearby vehicles, a fast and energy-efficient asynchronous neighbor discovery protocol is indispensable because a dashboard camera is an energy-hungry device after the vehicle's engine has turned off. In the existing asynchronous neighbor discovery protocols, all nodes always try to discover all neighbors. However, a dashboard camera needs to discover nearby dashboard cameras when an event is detected. In this paper, we propose a fast and energy-efficient asynchronous neighbor discovery protocol, which enables nodes : 1) to have different roles in neighbor discovery, 2) to discover neighbors within a search range, and 3) to report promptly the exact discovery result. The proposed protocol has two modes: periodic wake-up mode and active discovery mode. A node begins with the periodic wake-up mode to be discovered by other nodes, switches to the active discovery mode on receiving a neighbor discovery request, and returns to the periodic wake-up mode when the active discovery mode finishes. In the periodic wake-up mode, a node wakes up at multiples of number ${\alpha}$, where ${\alpha}$ is determined by the node's remaining battery power. In the active discovery mode, a node wakes up for consecutive ${\gamma}$ slots. Then, the node operating in the active discovery mode can discover all neighbors waking up at multiples of ${\beta}$ for ${\beta}{\leq}{\gamma}$ within ${\gamma}$ time slots. Since the proposed protocol assigns one half of the duty cycle to each mode, it consumes equal to or less energy than the existing protocols. A performance comparison shows that the proposed protocol outperforms the existing protocols in terms of discovery latency and energy consumption, where the frequency of neighbor discovery requests by car accidents is not constantly high.

An Energy-based PEGASIS Protocol for Efficient Routing in Wireless Sensor Networks (WSN에서의 효율적 라우팅을 위한 에너지 기반 PEGASIS 프로토콜)

  • Hyun-Woo Do;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.809-816
    • /
    • 2024
  • In a Wireless Sensor Network (WSN) environment, where numerous small sensors are arranged in a certain space to form a wireless network, each sensor has limited battery power. Therefore, the lifetime of each sensor node is directly related to the network's lifetime, necessitating efficient routing to maximize the network's lifespan. This study proposes a routing protocol based on PEGASIS, a representative energy-efficient routing protocol in WSN environments. The proposed protocol categorizes nodes into groups based on their distance from the sink node, forms multiple chains within each group, and selects the leader node for each group by comparing the remaining energy levels. The proposed method ensures that each group's leader node is the one with the highest energy within that group, which has been shown to increase the network's lifespan compared to the traditional PEGASIS method.

Energy-Efficient Data Aggregation and Dissemination based on Events in Wireless Sensor Networks (무선 센서 네트워크에서 이벤트 기반의 에너지 효율적 데이터 취합 및 전송)

  • Nam, Choon-Sung;Jang, Kyung-Soo;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • In this paper, we compare and analyze data aggregation methods based on event area in wireless sensor networks. Data aggregation methods consist of two methods: the direct transmission method and the aggregation node method. The direct aggregation method has some problems that are data redundancy and increasing network traffic as all nodes transmit own data to neighbor nodes regardless of same data. On the other hand the aggregation node method which aggregate neighbor's data can prevent the data redundancy and reduce the data. This method is based on location of nodes. This means that the aggregation node can be selected the nearest node from a sink or the centered node of event area. So, we describe the benefits of data aggregation methods that make up for the weak points of direct data dissemination of sensor nodes. We measure energy consumption of the existing ways on data aggregation selection by increasing event area. To achieve this, we calculated the distance between an event node and the aggregation node and the distance between the aggregation node and a sink node. And we defined the equations for distance. Using these equations with energy model for sensor networks, we could find the energy consumption of each method.

An Efficient Dynamic Prediction Clustering Algorithm Using Skyline Queries in Sensor Network Environment (센서 네트워크 환경에서 스카이라인 질의를 이용한 효율적인 동적 예측 클러스터링 기법)

  • Cho, Young-Bok;Choi, Jae-Min;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.139-148
    • /
    • 2008
  • The sensor network is applied from the field which is various. The sensor network nodes are exchanged with mobile environment and they construct they select cluster and cluster headers. In this paper, we propose the Dynamic Prediction Clustering Algorithm use to Skyline queries attributes in direction, angel and hop. This algorithm constructs cluster in base mobile sensor node after select cluster header. Propose algorithm is based made cluster header for mobile sensor node. It "Adv" reduced the waste of energy which mobile sensor node is unnecessary. Respects clustering where is efficient according to hop count of sensor node made dynamic cluster. To extend a network life time of 2.4 times to decrease average energy consuming of sensor node. Also maintains dynamic cluster to optimize the within hop count cluster, the average energy specific consumption of node decreased 14%.

  • PDF