• Title/Summary/Keyword: Nodal equivalence

Search Result 6, Processing Time 0.023 seconds

An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs (PWR 소격격자 Nodal 계산에의 균질화 이론 적용)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.202-216
    • /
    • 1984
  • The success of coarse-mesh nodal solution methods provides strong motivation for finding homogenized parameters which, when used in global nodal calculation, will reproduce exactly all average nodal reaction rates for large nodes. Two approximate theories for finding these ideal parameters, namely, simplified equivalence theory and approximate node equivalence theory, are described herein and then applied to the PWR benchmark problem. Nodal code, ANM, is used for the global calculation as well as for the homogenization calculation. From the comparative analysis, it is recommended that homogenization be carried out only for the unique type of fuel assemblies and for core boundary color-sets. The use of approximate homogenized cross-sections and approximate discontinuity factors predicts nodal powers with maximum error of 0.8% and criticality within 0.1% error relative to the fine-mesh KIDD calculations.

  • PDF

Improved nodal equivalence with leakage-corrected cross sections and discontinuity factors for PWR depletion analysis

  • Lee, Kyunghoon;Kim, Woosong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1195-1208
    • /
    • 2019
  • This paper introduces a new two-step procedure for PWR depletion analyses. This procedure adopts the albedo-corrected parameterized equivalence constants (APEC) method to correct the lattice-based raw cross sections (XSs) and discontinuity factors (DFs) by accounting for neutron leakage. The intrinsic limitations of the conventional two-step methods are discussed by analyzing a 2-dimensional SMR with the commercial DeCART2D/MASTER code system. For a full-scope development of the APEC correction, the MASTER nodal code was modified so that the group constants can be corrected in the middle of a microscopic core depletion. The basic APEC methodology is described and color-set problems are defined to determine the APEC functions for burnup-dependent XS and DF corrections. Then the new two-step method was applied to depletion analyses of the SMR without thermal feedback, and its validity was evaluated in terms of being able to predict accurately the reactor eigenvalue and nodal power profile. In addition, four variants of the original SMR core were also analyzed for a further evaluation of the APEC-assisted depletion. In this work, several combinations of the burnup-dependent and -independent XS and DF corrections were also considered. The results show that the APEC method could enhance the nodal equivalence significantly with inexpensive additional costs.

Comparison of Force Calculation Methods in 2D and 3D Finite Element Method

  • Yan Xiuke;Koh, Chang-Seop;Ryu, Jae-Seop;Xie Dexin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.137-145
    • /
    • 2001
  • The magnetic force calculation methods, the Maxwell's stress tensor method, virtual work method, and nodal force method, are reviewed and the equivalence of them are theoretically proved. The methods are applied to the magnetic force calculation of 2D linear and nonlinear problems, and 3D nonlinear problem. As the results, the convergence of the methods as the number of elements increases, accuracy of the methods, and integral path dependence of the methods are discussed. Finally some recommendations on the usage of the methods, including the determination of the integral path, are given.

  • PDF

Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements (3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구)

  • Oh, Jung-Sik;Kim, Yooil;Jeon, Seok-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

A New Approach to Treating Baffle/Reflector Heterogeneity in AFEN Methodology

  • Cho, Nam-Zin;Kim, Do-Sam;Kim, Yong-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.148-153
    • /
    • 1996
  • In this paper, an effective method for resolving difficulty resulting from the heterogeneity of the PWR baffle/reflector region is developed on the basis of the AFEN method. The essential difference of the new method from the conventional approach based on the equivalence theory is that the heterogeneous baffle/reflector is directly, without homogenization, considered as a node in nodal calculation Numerical results show that AFEN method with the new method can accurately predict both the multiplication factor and the power distribution of thermal reactors with baffle explicitly modeled.

  • PDF