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Abstract

In this paper, an effective method for resolving difficulty resulting from
the heterogeneity of the PWR baffle/reflector region is developed on the
basis of the AFEN method. The essential difference of the new method from
the conventional approach based on the' equivalence theory is that the
heterogeneous bdffle/reflector is directly, without homogenization, considered
as a node in nodal calculation. Numerical results show that AFEN method
with the new method can accurately predict both the multiplication factor and
the power distribution of thermal reactors with baffle explicitly modeled.

1. Introduction

Advanced nodal methods have been successfully applied to the analysis of the
thermal reactors with aid of the equivalence theory. However, it is well known that
accuracy of nodal methods highly depends on how to treat baffle/reflector region of
the PWR core. Especially, the bundle power in peripheral region of the core can have
a large error if the baffle/reflector region is not treated properly. The simplest
treatment of the baffle/reflector region is to model the baffle and reflector regions
independently. However, this direct modeling requires much longer computing time
and furthermore the nodal algorithm may suffer from the numerical instability caused
by the highly irregular mesh system.

To surmount this difficulty, two approaches have been popularly used: one is the
albedo method[1], and the other is based on the equivalence theory[2]. The albedo
approach replacing the baffle/reflector region by the albedo boundary condition has
been used with Ilimited success. In the latter approach, an equivalent homogeneous
node with discontinuity factors substitutes the heterogeneous baffle/reflector region.
This approach requires several extended assembly calculations to obtain accurate
equivalent homogenized parameters for the baffle/reflector region. Consequently, extra
computational efforts in addition to the nodal calculation are needed, computation time
of which is not negligible in the analysis of large practical cores. Therefore, in
practice, a single set of equivalent parameters obtained with one-dimensional
calculation is usually used, to save the computing time, with fudging factors to take
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into account the various states of cores including jagged baffle/reflector and burnup
effects.

In this paper, a new approach to treating the heterogeneity of the PWR reflector is
suggested within the framework of AFEN[3,45] method. The new method, which is
quite different from the above two approaches, has been successfully applied to AFEN
nodal calculations.

II. Methodology

II.1 Nodal Equations

The derivation of the nodal coupling equations for a homogeneous assembly, we
use the same procedure used in the original AFEN methodology, which is not
repeated here. For the baffle/reflector nodes, we starts from the two-group
two-dimensional diffusion equations :

-V -D”V¢”(x,y)+2”¢"(x,y)=7lef;Q"¢”(x,y), 1)

where the notations are standard.
In this work, we allow the heterogeneity of cross sections in the baffle/reflector

nodes. Similarly to the AFEN calculation with burnup gradient[5], the solution of the
equation is expanded in terms of analytic basis functions and additional polynomial
correction terms, that is,

¢"(x,y)=¢"(x, )+ ¢™(x,y), ()
where ¢ ™%(x,y) is analytic expansion function, which can be obtained with AFEN
method, and ¢ "?(x,y) refers to polynomial function.
For the polynomial basis functions, Legendre polynomials are used :
"Xz, y) = ZE;P(3)P( ), &)
where P, denotes i‘th order Legendre polynomial. In the present work, five

polynomial functions are used and they are composed of linear and quadratic Legendre
polynomials.

To determine the coefficients of the flux expansion given in Eq.(2), we need 14
nodal conditions. We can find nine coefficients by requiring the flux expansion to
reproduce the nine nodal quantities. Five more constraints are obtained by forcing the
flux expansion to obey the diffusion Eq.(1) in a weighted residual sense:

f_hhf_hhw(x,y)[ —v - D"x,y)ve™(x,y)
+ 2%(x, y)¢"(x, y)dxdy=0,

where
%, ) =2"(x,»)— Q" (x,¥).

In this way, all the expansion coefficients can be expressed in terms of nine nodal
quantities. Once all the coefficients in the flux expansion are expressed in terms of
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the nodal unknowns, we must build as many solvable nodal coupling equations as the
number of nodal unknowns. The nodal coupling equations are derived similarly as in
the homogeneous AFEN calculation: neutron balance equation, current continuity
equations, and comer-point leakage balance equations are used to derive the reguired
nodal equations.

I1.2 Analytic Expansion Functions in the Baffle/Reflector Region

As described in the previous section, the intranodal flux in the baffle/reflector
region is expanded with both analytic functions and polynomial terms. To obtain the
analytic part, we have to determine x, which requires representative cross sections
of the heterogeneous baffle/reflector node. In this paper, the representative group
constants are determined in the following way :

Zo= wE ™+ (1— w) Z7
In the above formula, the weighting factor w is obtained using a simple
two-dimensional calculation in a spectral geometry shown in Fig. 1.

$=0

fuel assembly reflector

J=0 ¢=0

0 —-h - T

J=0
Fig. 1 Spectral geometry to determine w

To determine the optimal value of w, an iterative procedure is needed :
Step 1 : Find the heterogeneous solution (k%) for the spectral geometry.
Step 2 : Let w=0.5 (initial guess).

Step 3 : Find the nodal solution (£2%%') with current w.
Step 4 : If 11000k} — k™ )/ ki 1<0.001, stop.

Otherwise, adjust w and go to Step 3.
This iteration converges very rapidly (a few iterations) and the optimal w is usually
in the range 0.45< w<(.6 in most cases. '
It is worthwhile to note that, in the present approach, a single value of w is used

for all baffle/reflector nodes. Therefore, the spectral geometry calculation is performed
only once for a core under investigation.

III. Application to Benchmark Problems

To test accuracy and applicability of the new method, several benchmark problems
were analyzed. The first benchmark problem is a small PWR core with explicit baffle
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of 2.8 cm thickness. Geometrical layout of problem I is shown in Fig. 2 and group
constants of the problems are given in Table 1. Assembly side-length is 21 cm and
zero current boundary conditions are imposed on left and top surfaces and the outer
boundary conditions are flux-zero condition.

For this problem, spectral geometry calculations with fuel type 1 give the optimal
weighting factor w=0.52. In Fig. 2, numerical results of the new method are
compared with those of the conventional homogenization approach. The equivalent
homogenized parameters of the baffle/reflector
one-dimensional extended assembly calculation for fuel

node are obtained using
type 1 adjoining the
baffle/reflector node. From the results, one can see that both the new method and

conventional method provide accurate solutions in both k,; and nodal power for this

problem.
Table 1. Material properties of benchmark problems
TYPE Group D Z, v, 2
fast | 151334E+00 | 1.21010E-02 | 6.01302E-03
1 thermal | 394854E-01 | 1.68140E-01 | 2.18104E-01 | 2-11238E-02
fast | 151333E+00 | 9.32598E-03 | 4.62554E-03
2 thermal | 3.95012E-01 | 1.41160E-01 | 1.64080E-01 | 2-11234E-02
fast | 1.46576E+00 | 1.47702E-02 | 4.63361E-03
3 thermal | 3.85034E-01 | 1.75467E-01 | 1.72962E-01 | 1.89548E-02
AMOX) |fast | 1.20000E+00 | 137912E-02 | 6.85245E-03 ]
thermal | 4.00000E-01 | 2.31576E-01 | 3.44398E-01 | 1.58634E-02
fast 1.020 0.0032
baffle  [thermal 0.335 0.1460 0.000
fast 1.700 0.0010
water  |“thermal 0.350 0.0500 0.035
Material 3 2 1
keff=0.8892027 0.6037 11350 1.0633
0.0066 : new 0.338 0.012 -0.115
-0.0450 : conventional 0.799 0.376 -0.048
2 1 1
1.3870 0.8064
-0.042 0.046
-0.146 -0.890
1 1

Fig. 2. Error distribution of new and conventional methods in benchmark problem I

Considering the practical design procedures of reactor cores, a modeling of baffle
/reflector should have two properties: first, the solution should be close to the

reference one as much as possible and secondly, power distribution should be
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accurately predicted even when the reactor is at some state other than the reference
state for which the baffle/reflector node is characterized. To model such a situation,
benchmark problem II is introduced, where we put the MOX assemblies in the jagged
baffle region of benchmark problem I and interchanged fuel type 1 and 2 as shown in
Fig. 3.

In Fig. 3, errors of new and conventional methods are compared. It should be
noted that equivalent parameters for the baffle/reflector nodes are the same as in
problem I and the same weighting factor in the new method is also used. As shown
in Fig. 3, the new method provides more accurate k,; and nodal powers than the

conventional approach although the core state is quite different from the reference
state.

Material 3 1 2
keff=0.89553 0.6717 1.4577 0.8371
0.0228 : new -0.079 -0.210 -0.008
-0.0300 : conventional -0.120 ~0.249 0.834

1 2 4
1.1481 0.7953
0.146 0.321
0.307 0.621

2 4

Fig. 3 Error distribution of new and conventional methods in benchmark problem I

The third benchmark problem is the well-known two-dimensional Zion corel6]
composed of 4 types of fuel assemblies and baffle/reflector. Geometry and group
constants of the Zion core can be found in Ref. 6. Group constants of the baffle are
very similar to those of problem I, but there are significant differences in cross
sections of water reflector. ‘

For the baffle/reflector node of the Zion core, the optimal weighting factor was
found to be 0.555. Calculational results for this problem are summarized in Table II
In the Zion core, it can be observed that the new method provides much better
solution than the conventional one-dimensional homogenization approach. The
maximum error of the present work in nodal power is only about 0.5%, while it is as
much as 2.4% in the conventional approach.

"able II. Results for the Zion core

Kegr node power error(%)

method Kef

error(%) max. avg.

reference 1.27489 -= -= -
new 1.27493 0.003 -0.490 0.160
conventional 1.27409 -0.063 . 2472 0.820
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IV. Conclusions

We have shown that the long-standing problem in nodal methods caused by
baffle/reflector heterogeneity in PWR cores can be effectively resolved in AFEN
method. In the new method, unlike the conventional approaches, the heterogeneous
baffle/reflector node is directly treated and simple nodal calculations in a spectral
geometry are required. From various benchmark calculations, we can draw the
following conclusions

- The new method can provide more accurate solutions than the conventional
one-dimensional homogenization technique.

- Accuracy of the present approach is insensitive to changes of core configuration.
Therefore, once the spectral geometry calculations are done, the resulting
parameters can be faithfully used for any core configuration.

Considering the fact that the present approach can hardly be realized in the
conventional nodal methods, it can be said that the present work reveals another
advantage of the AFEN method over the conventional ones.
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