• Title/Summary/Keyword: Nociception

Search Result 124, Processing Time 0.019 seconds

Lipoxygenase Inhibitors Suppressed Carrageenan-Induced Fos-Expression and Inflammatory Pain Responses in the Rat

  • Yoo, Sungjae;Han, Shanshu;Park, Young Shin;Lee, Jang-Hern;Oh, Uhtaek;Hwang, Sun Wook
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.417-422
    • /
    • 2009
  • Lipoxygenase (LO) metabolites are generated in inflamed tissues. However, it is unclear whether the inhibition of the LO activity regulates the expression of c-Fos protein, a pain marker in the spinal cord. Here we used a carrageenan-induced inflammation model to examine the role of LO in the development of c-Fos expression. Intradermally injected carrageenan caused elevated number of cells exhibiting Fos-like immunoreactivity (Fos-LI) in the spinal dorsal horn, and decreased the thermal and mechanical threshold in Hargreaves and von Frey tests. Pretreatment with an inhibitor of phospholipase A2, that generates the LO substrate, prior to the carrageenan injection significantly reduced the number of Fos-(+) cells. A general LO inhibitor NDGA, a 5-LO inhibitor AA-861 and a 12-LO inhibitor baicalein also exhibited the similar effects. Moreover, the LO inhibitors suppressed carrageenan-induced thermal and mechanical hyperalgesic behaviors, which inidcates that the changes in Fos expression correlates with those in the nociceptive behaviors in the inflamed rats. LO products are endogenous TRPV1 activators and pretreatment with BCTC, a TRPV1 antagonist inhibited the thermal but not the mechanical hypersensitivity. Overall, our results from the Fos-LI and behavior tests suggest that LO products released from inflamed tissues contribute to nociception during carrageenan-induced inflammation, indicating that the LO pathway is a possible target for modulating inflammatory pain.

Neurochemical Characterization of the TRPV1-Positive Nociceptive Primary Afferents Innervating Skeletal Muscles in the Rats

  • Shin, Dong-Su;Kim, Eun-Hyun;Song, Kwan-Young;Hong, Hyun-Jong;Kong, Min-Ho;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Objective: Transient receptor potential vanilloid subfamily type 1 (TRPV1), a most specific marker of the nociceptive primary afferent, is expressed in peptidergic and non-peptidergic primary afferents innervating skin and viscera. However, its expression in sensory fibers to skeletal muscle is not well known. In this study, we studied the neurochemical characteristics of TRPV1-positive primary afferents to skeletal muscles. Methods: Sprague-Dawley rats were injected with total $20{\mu}l$ of 1% fast blue (FB) into the gastrocnemius and erector spinae muscle and animals were perfused 4 days after injection. FB-positive cells were traced in the L4-L5 (for gastrocnemius muscle) and L2-L4 (for erector spinae muscle) dorsal root ganglia. The neurochemical characteristics of the muscle afferents were studied with multiple immunofluorescence with TRPV1, calcitonin gene-related peptide (CGRP) and $P2X_3$. To identify spinal neurons responding to noxious stimulus to the skeletal muscle, 10% acetic acids were injected into the gastrocnemius and erector spinae muscles and expression of phospho extracellular signal-regulated kinase (pERK) in spinal cords were identified with immunohistochemical method. Results: TRPVl was expressed in about 49% of muscle afferents traced from gastrocnemius and 40% of erector spinae. Sixty-five to 60% of TRPV1-positive muscles afferents also expressed CGRP. In contrast, expression of $P2X_3$ immnoreaction in TRPV1-positive muscle afferents were about 20%. TRPV1-positive primary afferents were contacted with spinal neurons expressing pERK after injection of acetic acid into the muscles. Conclusion: It is consequently suggested that nociception from skeletal muscles are mediated by TRPV1-positive primary afferents and majority of them are also peptidergic.

Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model

  • Yeo, Ji-Hee;Kim, Sol-Ji;Roh, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.365-374
    • /
    • 2021
  • The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 μl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.

Bee venom reduces burn-induced pain via the suppression of peripheral and central substance P expression in mice

  • Kang, Dong-Wook;Choi, Jae-Gyun;Kim, Jaehyuk;Park, Jin Bong;Lee, Jang-Hern;Kim, Hyun-Woo
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.9.1-9.11
    • /
    • 2021
  • Background: Scalding burn injuries can occur in everyday life but occur more frequently in young children. Therefore, it is important to develop more effective burn treatments. Objectives: This study examined the effects of bee venom (BV) stimulation on scalding burn injury-induced nociception in mice as a new treatment for burn pain. Methods: To develop a burn injury model, the right hind paw was immersed temporarily in hot water (65℃, 3 seconds). Immediately after the burn, BV (0.01, 0.02, or 0.1 mg/kg) was injected subcutaneously into the ipsilateral knee area once daily for 14 days. A von Frey test was performed to assess the nociceptive response, and the altered walking parameters were evaluated using an automated gait analysis system. In addition, the peripheral and central expression changes in substance P (Sub P) were measured in the dorsal root ganglion and spinal cord by immunofluorescence. Results: Repeated BV treatment at the 2 higher doses used in this study (0.02 and 0.1 mg/kg) alleviated the pain responses remarkably and recovered the gait performances to the level of acetaminophen (200 mg/kg, intraperitoneal, once daily), which used as the positive control group. Moreover, BV stimulation had an inhibitory effect on the increased expression of Sub P in the peripheral and central nervous systems by a burn injury. Conclusions: These results suggest that a peripheral BV treatment may have positive potency in treating burn-induced pain.

Protective Effects of Bogol-tang on Monosodium Iodoacetate-induced Osteoarthritis and Interleukin-1β-treated Primary Chondrocytes (보골탕이 Monosodium Iodoacetate 유도 골관절염과 Interleukin-1β 유도 연골세포에 미치는 보호 효과)

  • Sung, Jin Wook;Lee, Hai Woong;Kang, Kyung Hwa;Kim, Kyoung Min;Cho, Sung Woo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.2
    • /
    • pp.101-113
    • /
    • 2019
  • Objectives Bogol-tang has clinically been used to protect joint cartilage and to treat osteoarthritis. Our objective was to study the protective effect of Bogol-tang extract (BGT) in functional impairment, behavioral disorders, cartilage loss and pathological changes in a monoiodoacetate (MIA)-induced murine osteoarthritis (OA) model and interleukin (IL)-$1{\beta}$ -treated primary rat chondrocytes. Methods Mouse knee joints were injected with MIA, a chemical that inhibits glycolysis and causes joint inflammation and matrix loss. MIA-OA induced mice orally administered BGT or acetaminophen (AAP) for 18 days by daily. Primary rat chondrocytes were pretreated with BGT or dexamethasone (DEX) and followed by co-incubation with IL-$1{\beta}$ (10 ng/mL). Results In MIA-OA mice model, BGT led to delayed response on hot plate analysis, and suppressed the cartilage loss and damages in joint tissues. BGT suppressed the elevated levels of inflammatory mediators, nitrite and $PGE_2$, the gene expression of matrix degrading enzymes, and extracellular-signal-regulated kinases 1/2 and c-JunN-terminal kinase phosphorylation in IL-$1{\beta}$-treated primary rat chondrocytes. Conclusions Our results suggest that BGT improve the knee joint function and delay the cartilage damages by anti-nociceptive, anti-inflammatory and ant-catabolic effects, which indicate BGT could be a potential candidate for osteoarthritis treatment.

Antinociceptive effects of oleuropein in experimental models of neuropathic pain in male rats

  • Chen, Huayong;Ma, Dandan;Zhang, Huapeng;Tang, Yanhong;Wang, Jun;Li, Renhu;Wen, Wen;Zhang, Yi
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • Background: The present investigation explored the therapeutic actions of oleuropein along with the possible signaling pathway involved in attenuating neuropathic pain in chronic constriction injury (CCI) and vincristine-induced neuropathic pain in male rats. Methods: Four loose ligatures were placed around the sciatic nerve to induce CCI, and vincristine (50 ㎍/kg) was injected for 10 days to develop neuropathic pain. The development of cold allodynia, mechanical allodynia, and mechanical hyperalgesia was assessed using different pain-related behavioral tests. The levels of H2S, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), orexin, and nuclear factor erythroid-2-related factor 2 (Nrf2) were measured in the sciatic nerve. Results: Treatment with oleuropein for 14 days led to significant amelioration of behavioral manifestations of neuropathic pain in two pain models. Moreover, oleuropein restored both CCI and vincristine-induced decreases in H2S, CSE, CBS, orexin, and Nrf2 levels. Co-administration of suvorexant, an orexin receptor antagonist, significantly counteracted the pain-attenuating actions of oleuropein and Nrf2 levels without modulating H2S, CSE and CBS. Conclusions: Oleuropein has therapeutic potential to attenuate the pain manifestations in CCI and vincristine-induced neuropathic pain, possibly by restoring the CSE, CBS, and H2S, which may subsequently increase the expression of orexin and Nrf2 to ameliorate behavioral manifestations of pain.

Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide

  • Moghrovyan, Armenuhi;Parseghyan, Lilya;Sevoyan, Gohar;Darbinyan, Anna;Sahakyan, Naira;Gaboyan, Monica;Karabekian, Zaruhi;Voskanyan, Armen
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.140-151
    • /
    • 2022
  • Background: Essential oils are of great interest for their analgesic and anti-inflammatory properties. We aimed to study the content of the essential oil of the Origanum vulgare of the Armenian highlands (OVA) in different periods of vegetation and to investigate its antinociceptive and anti-inflammatory effects in mice (in vivo) and cytotoxic action in cultured cells (in vitro). OVA essential oil was extracted from fresh plant material by hydro-distillation. Methods: For OVA essential oil contents determination the gas chromatography-mass spectrometry method was used. Formalin and hot plate tests and analysis of cell viability using the methyl-thiazolyl-tetrazolium (MTT) assay were used. Results: The maximal content of β-caryophyllene and β-caryophyllene oxide in OVA essential oil was revealed in the period of blossoming (8.18% and 13.36%, correspondently). In the formalin test, 4% OVA essential oil solution (3.5 mg/mouse) exerts significant antinociceptive and anti-inflammatory effects (P = 0.003). MTT assay shows approximately 60% cytotoxicity in HeLa and Vero cells for 2.0 µL/mL OVA essential oil in media. Conclusions: The wild oregano herb of Armenian highlands, harvested in the blossoming period, may be considered as a valuable source for developing pain-relieving preparations.

Anti-nociceptive effects of dual neuropeptide antagonist therapy in mouse model of neuropathic and inflammatory pain

  • Kim, Min Su;Kim, Bo Yeon;Saghetlians, Allen;Zhang, Xiang;Okida, Takuya;Kim, So Yeon
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.173-182
    • /
    • 2022
  • Background: Neurokinin-1 (NK1) and calcitonin gene-related peptide (CGRP) play a vital role in pain pathogenesis, and these proteins' antagonists have attracted attention as promising pharmaceutical candidates. The authors investigated the anti-nociceptive effect of co-administration of the CGRP antagonist and an NK1 antagonist on pain models compared to conventional single regimens. Methods: C57Bl/6J mice underwent sciatic nerve ligation for the neuropathic pain model and were injected with 4% formalin into the hind paw for the inflammatory pain model. Each model was divided into four groups: vehicle, NK1 antagonist, CGRP antagonist, and combination treatment groups. The NK1 antagonist aprepitant (BIBN4096, 1 mg/kg) or the CGRP antagonist olcegepant (MK-0869, 10 mg/kg) was injected intraperitoneally. Mechanical allodynia, thermal hypersensitivity, and anxiety-related behaviors were assessed using the von Frey, hot plate, and elevated plus-maze tests. The flinching and licking responses were also evaluated after formalin injection. Results: Co-administration of aprepitant and olcegepant more significantly alleviated pain behaviors than administration of single agents or vehicle, increasing the mechanical threshold and improving the response latency. Anxiety-related behaviors were also markedly improved after dual treatment compared with either naive mice or the neuropathic pain model in the dual treatment group. Flinching frequency and licking response after formalin injection decreased significantly in the dual treatment group. Isobolographic analysis showed a meaningful additive effect between the two compounds. Conclusions: A combination pharmacological therapy comprised of multiple neuropeptide antagonists could be a more effective therapeutic strategy for alleviating neuropathic or inflammatory pain.

Visual Effect on Mechanical Pain Threshold According to Anatomical Regions

  • Kun-Hwa Kang;Ji-Rak Kim;Jin-Seok Byun;Jae-Kwang Jung
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.4
    • /
    • pp.189-197
    • /
    • 2022
  • Purpose: Pain perception is affected by a wide range of contributing factors, including biological, psychological, and social factors. Although the provision of visual information could have a modulatory effect on pain perception, it is unclear whether such a visual effect might vary depending on the anatomical site and stimulation type. This study aimed to analyze the modulatory effect of visual information on the perception of sharp and dull pain in the face and hand and to assess the influence of individual fear levels on modulatory visual information. Methods: A total of 68 healthy male and female volunteers were recruited for this study. Pressure and pricking pain with and without visual information were induced on the masseter and thenar muscles, and alterations in pain threshold were evaluated. The survey was conducted using the Geop-Pain Questionnaire (GPQ). Results: The pricking pain threshold of the hand was significantly elevated when viewing the stimulated hand. This result indicated that the provision of visual information could decrease sensitivity to sharp pain in the hand. However, when correlating the GPQ score with the alteration in thresholds induced by visual information, no significant correlation was observed between the GPQ score and the threshold difference induced by visual information. This finding showed that the visual effect was not significantly affected by the fear level. Conclusions: This study showed that the effect of visual information on the pain threshold could vary according to the anatomical site and stimulation type. A better understanding of such a modulatory effect on pain perception might be useful for clinicians during painful therapeutic procedures.

Imbalance in the spinal serotonergic pathway induces aggravation of mechanical allodynia and microglial activation in carrageenan inflammation

  • Junxiu Jin;Dong Ho Kang;Jin Jeon;Hyung Gon Lee;Woong Mo Kim;Myung Ha Yoon;Jeong Il Choi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • Background: This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation. Methods: Male Sprague-Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation. Mechanical allodynia was measured using the von Frey test for 0-4 hours (early phase) and 24-28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord. Results: Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals. Conclusions: Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.