• 제목/요약/키워드: Nociception

검색결과 123건 처리시간 0.028초

고양이 척수 총상 증례: 임상소견, 수술소견, 컴퓨터단층영상소견 (A Case of Gunshot Injury to the Spinal Cord in a Cat:Clinical, Surgical, and Computed Tomographic Features)

  • 안승엽;윤헌영;정순욱
    • 한국임상수의학회지
    • /
    • 제32권2호
    • /
    • pp.187-190
    • /
    • 2015
  • 총상을 입은 18개월령 중성화된 암컷 고양이가 응급으로 내원하였다. 신체검사 및 신경검사에서 후지마비 및 심부통각소실을 보였으며 방사선사진 및 컴퓨터단층영상에서 1번 요추 왼쪽 근육에 한 개의 탄환(직경 3 mm)이 존재하고 척수강 안에 고신호 점이 나타났다. 탐색적 추궁절제술에서 요추1번 오른쪽 후방 관절돌기의 불완전 골절 및 척수 괴사를 확인하였다. 보호자의 동의하에 안락사 및 부검해 본바 1번 요추 왼쪽 척추뿌리(pedicle)에 균열이 존재했다.

The antinociceptive and anti-inflammatory effect of water-soluble fraction of bee venom on rheumatoid arthritis in rats

  • Lee, Jang-Hern;Kwon, Young-Bae;Lee, Jae-Dong;Kang, Sung-Keel;Lee, Hye-Jung
    • 대한약침학회지
    • /
    • 제4권1호
    • /
    • pp.65-84
    • /
    • 2001
  • We recently demonstrated that bee venom (BV) injection into acupoint (i.e. Zusanli) produced more potent anti-inflammatory and antinociciptive effect in Freunds adjuvant induced rheumatoid arthritis (RA) model as compared with that of non-acupoint injection(i.e back). However, the precise components underlying BV-induced antinociceptive and/or anti-inflammatory effects have not been fully understood. Therefore, we further investigated the anti-arthritic effect of BV after extracting the whole BV according to solubility (water soluble: BVA, ethylacetate soluble: BVE). Subcutaneous BVA treatment (0.9 mg/kg/day) into Zusanli acupoint was found to dramatically inhibit paw edema and radiological change (i.e. new bone proliferation and soft tissue swelling) caused by Freunds adjuvant injection. In addition, the increase of serum interleukin-6 by RA induction was normalized by the BVA treatment as similar with that of non-arthritic animals. On the other hand, BVA therapy significantly reduced arthritis induced nociceptive behaviors (i.e., nociceptive score for mechanical hyperalgesia and thermal hyperalgesia). Furthermore, BVA treatment significantly suppressed adjuvant induced Fos expression in the lumbar spinal cord at 3 weeks post-adjuvant injection. However, BVE treatment (0.05 mg/kg/day) has not any anti-inflammatory and anti-nociceptive effect on RA. Based on the present results, we demonstrated that BVA might be a effective fraction in whole BV for long-term treatment of RA-induced pain and inflammation. However, it is clear necessary that further fraction study about BVA was required for elucidating an effective component of BVA.

Antinociceptive effect of intrathecal sec-O-glucosylhamaudol on the formalin-induced pain in rats

  • Kim, Sang Hun;Jong, Hwa Song;Yoon, Myung Ha;Oh, Seon Hee;Jung, Ki Tae
    • The Korean Journal of Pain
    • /
    • 제30권2호
    • /
    • pp.98-103
    • /
    • 2017
  • Background: The root of Peucedanum japonicum Thunb., a perennial herb found in Japan, the Philippines, China, and Korea, is used as an analgesic. In a previous study, sec-O-glucosylhamaudol (SOG) showed an analgesic effect. This study was performed to examine the antinociceptive effect of intrathecal SOG in the formalin test. Methods: Male Sprague-Dawley rats were implanted with an intrathecal catheter. Rats were randomly treated with a vehicle and SOG ($10{\mu}g$, $30{\mu}g$, $60{\mu}g$, and $100{\mu}g$) before formalin injection. Five percent formalin was injected into the hind-paw, and a biphasic reaction followed, consisting of flinching and licking behaviors (phase 1, 0-10 min; phase 2, 10-60 min). Naloxone was injected 10 min before administration of SOG $100{\mu}g$ to evaluate the involvement of SOG with an opioid receptor. Dose-responsiveness and ED50 values were calculated. Results: Intrathecal SOG showed a significant reduction of the flinching responses at both phases in a dose-dependent manner. Significant effects were showed from the dose of $30{\mu}g$ and maximum effects were achieved at a dose of $100{\mu}g$ in both phases. The ED50 value (95% confidence intervals) of intrathecal SOG was 30.3 $(25.8-35.5){\mu}g$ during phase 1, and 48.0 (41.4-55.7) during phase 2. The antinociceptive effects of SOG ($100{\mu}g$) were significantly reverted at both phases of the formalin test by naloxone. Conclusions: These results demonstrate that intrathecal SOG has a very strong antinociceptive effect in the formalin test and it seems the effect is related to an opioid receptor.

Preventing Extracellular Diffusion of Trigeminal Nitric Oxide Enhances Formalin-induced Orofacial Pain

  • Jung, Hwi-Seok;Jeon, Hong-Bin;Jeon, Ik-Sung;Lee, Bum-Jun;Yoo, Hyun-Woo;Ahn, Dong-Kuk;Youn, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.379-383
    • /
    • 2009
  • Nitric oxide (NO), a diffusible gas, is produced in the central nervous system, including the spinal cord dorsal horn and the trigeminal nucleus, the first central areas processing nociceptive information from periphery. In the spinal cord, it has been demonstrated that NO acts as pronociceptive or antinociceptive mediators, apparently in a concentration-dependent manner. However, the central role of NO in the trigeminal nucleus remains uncertain in support of processing the orofacial nociception. Thus, we here investigated the central role of NO in formalin (3%)-induced orofacial pain in rats by administering membrane-permeable or -impermeable inhibitors, relating to the NO signaling pathways, into intracisternal space. The intracisternal pretreatments with the NO synthase inhibitor L-NAME, the NO-sensitive guanylate cyclase inhibitor ODQ, and the protein kinase C inhibitor GF109203X, all of which are permeable to the cell membrane, significantly reduced the formalin-induced pain, whereas the membrane-impermeable NO scavenger PTIO significantly enhanced it, compared to vehicle controls. These data suggest that an overall effect of NO production in the trigeminal nucleus is pronociceptive, but NO extracellularly diffused out of its producing neurons would have an antinociceptive action.

TEVC Studies of potent Antagonists of Human $P2X_3$ Receptor

  • Moon, Hyun-Duk;Lee, Jung-Sun;Park, Chul-Seung;Kim, Yong-Chul
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.55-55
    • /
    • 2003
  • P2X$_3$ receptor, a member of P2 purine receptors, is a ligand-gated ion channel activated by extracellular ATP as an endogenous ligand, and highly localized in peripheral and central sensory neurons. The activation of P2X3 receptor by ATP as the pronociceptive effect has been known to initiate the pain signaling involved in chronic inflammatory nociception and neuropathic pain by nerve injury, implicating the possibility of new drug development to control pains. In this study, we have developed a two electrode voltage clamp (TEVC) assay system to evaluate the inhibitory activity of several newly synthesized PPADS and a novel non-ionic antagonist against ATP activation of human P2X3 receptor. PPADS derivatives include several pyridoxine and pyridoxic acid analogs to study the effects of phosphate and aldehyde functional groups in PPADS. All new PPADS analogs were less potent than PPADS at human P2X$_3$ receptors, however, LDD130, a non-ionic analog showed potent antagonistic property with $IC_{50}$/ of 8.34 pM. In order to uncover the structure activity relationships of LDD130, and design new structural analogs, we synthesized and investigated a few structural variants of LDD130, and the results will be discussed in this presentation.

  • PDF

Participation of Peripheral P2X Receptors in Orofacial Inflammatory Nociception in Rats

  • Park, Min-Kyoung;Song, Hyun-Chul;Yang, Kui-Ye;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.143-148
    • /
    • 2011
  • The present study investigated the role of peripheral P2X receptors in inflammatory pain transmission in the orofacial area in rats. Experiments were carried out on male Sprague-Dawley rats weighing 220 to 280 g. Formalin (5%, 50 ${\mu}L$) and complete Freund's adjuvant (CFA, 25 ${\mu}L$) was applied subcutaneously to the vibrissa pad to produce inflammatory pain. TNP-ATP, a $P2X_{2,2/3,4}$ receptor antagonist, or OX-ATP, a $P2X_7$ receptor antagonist, was then injected subcutaneously at 20 minutes prior to formalin injection. One of the antagonists was administered subcutaneously at three days after CFA injection. The subcutaneous injection of formalin produced a biphasic nociceptive behavioral response. Subcutaneous pretreatment with TNP-ATP (80, 160 or 240 ${\mu}g$) significantly suppressed the number of scratches in the second phase produced by formalin injection. The subcutaneous injection of 50 ${\mu}g$ of OX-ATP also produced significant antinociceptive effects in the second phase. Subcutaneous injections of CFA produced increases in mechanical and thermal hypersensitivity. Both TNP-ATP (480 ${\mu}g$) and OX-ATP (100 ${\mu}g$) produced an attenuation of mechanical hypersensitivity. However, no change was observed in thermal hypersensitivity after the injection of either chemical. These results suggest that the blockade of peripheral P2X receptors is a potential therapeutic approach to the onset of inflammatory pain in the orofacial area.

백서의 척수강 내로 투여한 Sildenafil의 진통효과에 대한 Opioid 수용체 역할에 관한 연구 (The Role of Opioid Receptor on the Analgesic Action of Intrathecal Sildenafil in Rats)

  • 이형곤;정창영;윤명하;김웅모;신승헌;김여옥;황란희;최금화
    • The Korean Journal of Pain
    • /
    • 제20권1호
    • /
    • pp.21-25
    • /
    • 2007
  • Background: Intrathecal sildenafil has produced antinociception by increasing the cGMP through inhibition of phosphodiesterase 5. Spinal opioid receptor has been reported to be involved in the modulation of nociceptive transmission. The aim of this study was to examine the role of opioid receptor in the effect of sildenafil on the nociception evoked by formalin injection. Methods: Rats were implanted with lumbar intrathecal catheters. Formalin testing was used as a nociceptive model. Formalin-induced nociceptive behavior (flinching response) was observed. To clarify the role of the opioid receptor for the analgesic action of sildenafil, naloxone was administered intrathecally 10 min before sildenafil delivery, and formalin was then injected 10 min later. Results: Intrathecal sildenafil produced dose-dependent suppression of flinches in both phases during the formalin test. Intrathecal naloxone reversed the analgesic effect of sildenafil in both phases. Conclusions: Sildenafil is active against the nociceptive state that's evoked by a formalin stimulus, and the opioid receptor is involved in the analgesic action of sildenafil at thespinal level.

Calcium Ions are Involved in Modulation of Melittin-induced Nociception in Rat: I. Effect of Voltage-gated Calcium Channel Antagonist

  • Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.255-261
    • /
    • 2006
  • Melittin-induced nociceptive responses are mediated by selective activation of capsaicin-sensitive primary afferent fibers and are modulated by excitatory amino acid receptor, cyclooxygenase, protein kinase C and serotonin receptor. The present study was undertaken to investigate the peripheral and spinal actions of voltage-gated calcium channel antagonists on melittin-induced nociceptive responses. Changes in mechanical threshold and number of flinchings were measured after intraplantar (i.pl.) injection of melittin $(30\;{\mu}g/paw)$ into mid-plantar area of hindpaw. L-type calcium channel antagonists, verapamil [intrathecal (i.t.), 6 or $12\;{\mu}g$; i.pl.,100 & $200\;{\mu}g$; i.p., 10 or 30 mg], N-type calcium channel blocker, ${\omega}-conotoxin$ GVIA (i.t., 0.1 or $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) and P-type calcium channel antagonist, ${\omega}-agatoxin$ IVA (i.t., $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) were administered 20 min before or 60 min after i.pl. injection of melittin. Intraplantar pre-treatment and i.t. pre- or post-treatment of verapamil and ${\omega}-conotoxin$ GVIA dose-dependently attenuated the reduction of mechanical threshold, and melittin-induced flinchings were inhibited by i.pl. or i.t. pre-treatment of both antagonists. P-type calcium channel blocker, ${\omega}-agatoxin$ IVA, had significant inhibitory action on flinching behaviors, but had a limited effect on melittin-induced decrease in mechanical threshold. These experimental findings suggest that verapamil and ${\omega}-conotoxin$ GVIA can inhibit the development and maintenance of melittin-induced nociceptive responses.

Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats

  • Kim, Hye-Jin;Lee, Geun-Woo;Kim, Min-Ji;Yang, Kui-Ye;Kim, Seong-Taek;Bae, Yong-Cheol;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.349-355
    • /
    • 2015
  • We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund's adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions.

Spinal Metabotropic Glutamate Receptors (mGluRs) are Involved in the Melittin-induced Nociception in Rats

  • Cho, Chul-Hyun;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.237-243
    • /
    • 2008
  • Intraplantar injection of melittin has been known to induce sustained decrease of mechanical threshold and increase of spontaneous flinchings. The present study was undertaken to investigate how the melittin-induced nociceptive responses were modulated by changes of metabotropic glutamate receptor (mGluR) activity. Changes in paw withdrawal threshold (PWT), number of flinchings and paw thickness were measured at a given time point after injection of melittin ($10{\mu}g$/paw) into the mid-plantar area of rat hindpaw. To observe the effects of mGluRs on the melittin-induced nociceptions, group I mGluR (AIDA, $100{\mu}g$ and $200{\mu}g$), $mGluR_1$ (LY367385, $50{\mu}g$ and $100{\mu}g$) and $mGluR_5$ (MPEP, $200{\mu}g$ and $300{\mu}g$) antagonists, group II (APDC, $100{\mu}g$ and $200{\mu}g$) and III (L-SOP, $100{\mu}g$ and $200{\mu}g$) agonists were intrathecally administered 20 min before melittin injection. Intraplantar injection of melittin induced a sustained decrease of mechanical threshold, spontaneous flinchings and edema. The effects of melittin to reduce mechanical threshold and to induce spontaneous flinchings were significantly suppressed following intrathecal pre-administration of group I mGluR, $mGluR_1$ and $mGluR_5$ antagonists, group II and III mGluR agonists. Group I mGluR antagonists and group II and III mGluR agonists had no significant effect on melittin-induced edema. These experimental findings indicate that multiple spinal mGluRs are involved in the modulation of melittin-induced nociceptive responses.