• Title/Summary/Keyword: Noble

Search Result 868, Processing Time 0.033 seconds

A Noble Equalizer Structure with the Variable Length of Training Sequence for Increasing the Throughput in DS-UWB

  • Chung, Se-Myoung;Kim, Eun-Jung;Jin, Ren;Lim, Myoung-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.113-119
    • /
    • 2009
  • The training sequence with the appropriate length for equalization and initial synchronization is necessary before sending the pure data in the burst transmission type DS-UWB system. The length of the training sequence is one of the factors which make throughput decreased. The noble structure with the variable length of the training sequence whose length can be adaptively tailored according to the channel conditions (CM1,CM2,CM3,CM4) in the DS-USB systems is proposed. This structure can increase the throughput without sacrificing the performance than the method with fixed length of training sequence considering the worst case channel conditions. Simulation results under IEEE 802.15.3a channel model show that the proposed scheme can achieve higher throughput than a conventional one with the slight loss of BER performance. And this structure can reduce the computation complexity and power consumption with selecting the short length of the training sequence.

Fabrication and NOx Sensing Characteristics of $WO_{3}$ Based Thick Film Devices Doped with $TiO_{2}$ and Noble Metals ($TiO_{2}$와 귀금속을 첨가한 $WO_{3}$ 후막 센서의 제조 및 NOx 감응 특성)

  • Lee, Dae-Sik;Han, Sang-Do;Son, Young-Mok;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.274-279
    • /
    • 1997
  • NOx sensors using tungsten oxide films as a base material were prepared and their electrical and sensing characteristics have been investigated. The $WO_{3}$ thick films doped with $SnO_{2}$ or $TiO_{2}$ showed higher sensitivity and better sorption characteristics to NOx gas than the pure $WO_{3}$ films material in air at operating temperature of $400^{\circ}C$. By addition of noble catalysts, such as Ru or Au, to the $TiO_{2}-WO_{3}$ thick films, their sensitivity, recovery and selectivity to NOx gas were found to be more enhanced.

  • PDF

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon;Kim, Taehoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.382-387
    • /
    • 2020
  • Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

Solvent Sublation of Trace Noble Metals by Formation of Metal Complexes with 2-Mercaptobenzothiazole

  • Kim, Yeong Sang;Sin, Je Hyeok;Choe, Yun Seok;Lee, Won;Lee, Yong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 2001
  • A solvent sublation has been studied for the determination of trace Au(III), Pt(IV) and Pd(II) in waste water with their complexes of 2-mercaptobenzothiazole (MBT). Experimental conditions such as the concentration of HCl, the amount of MBT as a ligand, the type and amount of surfactants, bubbling rate and time, and the type of organic solvent were optimized for the solvent sublation, i.e., 25.0 mL of 2.0 M HCl solution and 30mL of 0.4%(w/v) MBT ethanolic solution were added to a 1.0 L sample to form stable complexes. The addition of 4.0 mL of 1 ${\times}$$10^{-3}$ M CTAB (cetyltrimehtylammonium bromide) solution was needed for the effective flotation accomplished by bubbling nitrogen gas at the rate of 40.0 mL/min for 35 minutes. As a solvent, 20.0 mL of MIBK (methylisobuthylketone) was used to extract the floated complexes. The procedure was applied to three kinds of waste waters. Au(III) was determined as 0.68 ng/mL and 0.98 ng/mL respectively for final washed water of two plating industries in Banwol. Pd(II) and Pt(IV) were not detected in any of the three samples. The recovery, which was obtained with analyte-spiked samples, were 95-120%.

Enhanced Light Transmittance of Densely Packed Metal Nanoparticle Layers (밀집된 금속 나노 입자 레이어의 광학 특성)

  • Jeon, Hyunji;Choi, Jinnil
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.701-708
    • /
    • 2020
  • Irradiation of the metal nanoparticles causes local plasmon resonance in a specific wavelength band, which can improve the absorption and scattering properties of a structure. Since noble metal nanoparticles have better resonance effects than those of other metals, it is easy to identify plasmonic reactions and this is advantageous to find the optical tendency. Compared to having a particle gap or randomly arranged particle structures, densely and evenly packed structures can exhibit more uniform optical properties. Using the uniform properties, the structure can be applied to optical filtering applications. Therefore, in this paper, validation tests about metal nanoparticles and thin film structures are conducted for more accurate analysis. The optical properties of monolayer and bilayer noble metal nanoparticle structures with different diameters, packed in a uniform array, are investigated and their optical trends are analyzed. In addition, a thin film structure under identical conditions as metal nanoparticle structure is evaluated to confirm the improved optical characteristics.

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

Combustion Efficiency Estimation Method of Solid Propellants and the Effects of Grain Shape using Closed Bomb Test (CBT를 이용한 고체 추진제의 연소효율 도출 방법과 그레인 형상의 영향 분석)

  • Jonggeun Park;Hong-Gye Sung;Wonmin Lee;Eunmi Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.53-61
    • /
    • 2022
  • The estimation method of combustion efficiency has been introduced by using closed bomb test(CBT). The Noble-Abel equation of state was applied to consider the real gas effects to take account of high operation pressure about a couple of 100 atm. of CBT. The heat loss through the CBT wall was considered. The volume change of grain was calculated by applying form functions, which estimated combustion efficiency of 8 different gain shapes. The combustion estimation method proposed in this study was fairly validated by the comparision with the pressure-time history data of the CBT experiments. The effects of both grain shape and propellant loading density were analyzed.

Determination of escape rate coefficients of fission products from the defective fuel rod with large defects in PWR

  • Pengtao Fu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2977-2983
    • /
    • 2023
  • During normal operation, some parts of the fission product in the defective fuel rods can release into the primary loops in PWR and the escape rate coefficients are widely used to assess quantitatively the release behaviors of fission products in the industry. The escape rate coefficients have been standardized and have been validated by some drilling experiments before the 1970s. In the paper, the model to determine the escape rate coefficients of fission products has been established and the typical escape rate coefficients of noble gas and iodine have been deduced based on the measured radiochemical data in one operating PWR. The result shows that the apparent escape rate coefficients vary with the release-to-birth and decay constants for different fission products of the same element. In addition, it is found that the escape rate coefficients from the defective rod with large defects are much higher than the standard escape rate coefficients, i.e., averagely 4.4 times and 1.8 times for noble gas and iodine respectively. The enhanced release of fission products from the severe secondary hydriding of several defective fuel rods in one cycle may lead to the potential risk of the temporary shutdown of the operating reactors.

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

Hydrogeochemistry and Origin of $CO_2$ and Noble Gases in the Dalki Carbonate Waters of the Chungsong Area (청송 달기탄산약수의 수리지화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.123-134
    • /
    • 2012
  • Hydrochemical analyses, carbon isotopic (${\delta}^{13}C_{DIC}$) analyses, and noble gas isotopic ($^3He/^4He$ and $^4He/^{20}Ne$) analyses of the Dalki carbonate waters in the Chungsong area were carried out to elucidate their hydrochemical composition and to determine the source of $CO_2$ gas and noble gases. The carbonate waters have a pH of between 5.93 and 6.33, and an electrical conductivity 1950 to $3030{\mu}S/cm$. The chemical composition of all carbonate waters was Ca(Mg)-$HCO_3$, with a high Na content. The contents of Fe, Mn, and As in some carbonate waters exceed the limit stipulated for drinking water. The concentrations of major ions are slightly higher than those reported previously. The ${\delta}^{13}C_{DIC}$ values range from -6.70‰ to -4.47‰, indicating that the carbon originated from a deep-seated source. The $^3He/^4He$ and $^4He/^{20}Ne$ ratios vary from $7.67{\times}10^{-6}$ to $8.38{\times}10^{-6}$ and from 21.32 to 725.7, respectively. On the $^3He/^4He$ versus $^4He/^{20}Ne$ diagram, the noble gas isotope ratios plot in the field of a deep-seated source, such as mantle or magma. We therefore conclude that $CO_2$ gas and noble gas in the Dalki carbonate waters originated from a deep-seated source, rather than an inorganic $CO_2$ origin as suggested in a previous study.