• Title/Summary/Keyword: No.of Cut

Search Result 1,152, Processing Time 0.03 seconds

Cutting Characteristic of SNCM420H steel for Ship Engine Supply Unit (선박엔진의 Supply Unit용 SNCM420H의 절삭특성)

  • Choi, Won-Sik;Sung, Bong-Soo;Kang, Chang-Won;Mun, Hee-Joon;Kwon, Ju-Ri
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.631-636
    • /
    • 2010
  • SNCM420 steel is one of the cam shaft materials which are used in the supply unit for ship engine cam shaft. In this study the assessment of cutting behavior was conducted for the SNCM 420 steel and SM45C steel with various cutting conditions as depth of cut 0.5, 1.0, 1.5, 2.0mm and feed rate 0.1~0.3m/rev. The controlled chip was produced in feed rate 0.2, depth of cut 1.0 for SNCM420 and feed rate 0.2, depth of cut 2.0 for SM45C. There is no difference cutting force between SM45C and SNCM420 steels.

Characteristics of Surface Roughness in the Wire-Cut Electric Discharge Cutting Conditions of Aluminium Alloy 2024 (알루미늄 합금 2024에서 와이어 컷 방전가공조건에 따른 표면 거칠기 특성)

  • Lee, Soon-Kwan;Ryu, Cheong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Currently, the aircraft industry, aircraft parts as well as airframe have been developed in producing, the aircraft parts and fuselages have been produced the product by cutting rather than forging and casting because of the residual stress and stress concentration. In this study, the aircraft is being used in many parts of aluminium alloy 2024 in wire-cut E.D.M. The selected experimental parameters are peak current, no-load voltage, off time and feed rate. It is found that cutting mountain part on surface roughness of the curve 0.3mm than 0.25mm diameter wire electrode is stable in many uniform distribution.

Machining Characteristics of SKS3 in Wire Cut Electrical Discharge Machining (합금공구강 SKS3의 와이어컷 방전가공 특성)

  • Ko, Beong-Du;Sin, Myong-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.101-106
    • /
    • 2008
  • In the wire cut electrical discharge machining, the optimal machining parameters setting satisfying the requirements of both high efficiency and good quality is very difficult because its process involves a series of complex physical phenomena and the machining parameters are numerous over diverse range. In this paper, the experimental investigation has been performed to find out the influence of the machining parameters on the machining performance such as cutting speed and surface roughness. The selected experimental parameters are no load voltage, discharge peak current and pulse-off time. The experimental results give the guideline for selecting suitable machining parameters.

Control Method for Cut-out of Shorted Load in the Auxiliary Power Supply (보조전원장치의 단락부하 차단기 개방을 위한 제어방법)

  • 황광철;조국춘;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.249-254
    • /
    • 1998
  • This paper describes the control methods to cut out the NFB(No Fuse Breaker) of shorted load in the auxiliary power supply, Generally, when the short-circuit occurs in the load of the auxiliary power supply, the auxiliary power supply stops the operation according to the protection sequence. Finally, the other auxiliary power supply stops the operation by the same fault, To resolve this problem, we suggest the control method to trip the NFB of shorted load. That is, when the short circuit occurs, the controller changes control mode from voltage mode to current mode without the operation of output contactor(SIVK) in the auxiliary power supply. The auxiliary power supply provides a large current for the short-circuit load. After some time, the NFB of the short-circuit load is cut off and the auxiliary power supply Provides stable voltage for the loads except for the short-circuit load.

  • PDF

A Study on the Characteristics of Wire-Cut Electrical Discharge Machining for STD-11 Alloy Steel and P-20 Tungsten Carbide Alloy (STD-11 합금공구강과 P-20 초경합금재의 WEDM 특성에 관한 연구)

  • Lee, Jae-Myeong;Heo, Seoung-Jung;Kim, Won-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.22-28
    • /
    • 1996
  • From the experimental study of Wire-Cut Electric Discharge Machining of STD-11 alloy steel and P-20 tungsten carbide, the characteristics such as hand drum form and discharge gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap voltage and spark cycle become smaller, thickness become thinner, wire tension become larger and the no of cutting increases. When 60mm thickness tungsten carbide is cut in normal condition, hand drum form becomes larger due to the low conductivity machining allowance become slightly larger when peak discharge current and gap voltage become larger, or wire tension becomes smaller. Under the same condition, machining allowance of tungsten carbide is larger than alloyed steel by 1/100mm.

  • PDF

Numerical Analysis of the Contour Method for Measuring Residual Stresses in Laser Shock Peened Ti-6Al-4V Strips

  • Shin Shang-Hyon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.290-296
    • /
    • 2005
  • The contour method is based on the elastic superposition principle, and relies on deformations that occur when a residually stressed part is cut along a plane. During the cut, the part is constrained at a location along the cut so that deformations are restrained as much as possible. The displacement is applied to an elastic FE model of the half. When plasticity is involved in the relaxation process, the superposition principle is no longer valid, and stress error in the resulting measurement of residual stress would be caused. Residual stress states in a laser peened Ti-6Al-4V strip were taken for the FE simulation.

Cut-Through versus Cut-Out: No Easy Way to Predict How Single Lag Screw Design Cephalomedullary Nails Used for Intertrochanteric Hip Fractures Will Fail?

  • Garrett W. Esper;Nina D. Fisher;Utkarsh Anil;Abhishek Ganta;Sanjit R. Konda;Kenneth A. Egol
    • Hip & pelvis
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2023
  • Purpose: This study aims to compare patients in whom fixation failure occurred via cut-out (CO) or cut-through (CT) in order to determine patient factors and radiographic parameters that may be predictive of each mechanism. Materials and Methods: This retrospective cohort study includes 18 patients with intertrochanteric (IT) hip fractures (AO/OTA classification 31A1.3) who underwent treatment using a single lag screw design intramedullary nail in whom fixation failure occurred within one year. All patients were reviewed for demographics and radiographic parameters including tip-to-apex distance (TAD), posteromedial calcar continuity, neck-shaft angle, lateral wall thickness, and others. Patients were grouped into cohorts based on the mechanism of failure, either lag screw CO or CT, and a comparison was performed. Results: No differences in demographics, injury details, fracture classifications, or radiographic parameters were observed between CO/CT cohorts. Of note, a similar rate of post-reduction TAD>25 mm (P=0.936) was observed between groups. A higher rate of DEXA (dual energy X-ray absorptiometry) confirmed osteoporosis (25.0% vs. 60.0%) was observed in the CT group, but without significance. Conclusion: The mechanism of CT failure during intramedullary nail fixation of an IT fracture did not show an association with clinical data including patient demographics, reduction accuracy, or radiographic parameters. As reported in previous biomechanical studies, the main predictive factor for patients in whom early failure might occur via the CT effect mechanism may be related to bone quality; however, conduct of larger studies will be required in order to determine whether there is a difference in bone quality.

Evaluation of Permeability on Construction Material in CFRD Bedding Zone (CFRD Bedding Zone의 축조재료에 대한 투수성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.493-499
    • /
    • 2009
  • Recently, the construction of Concrete Faced Rockfill Dam (CFRD) is increasing because rock material resources are plenty in Korea. Bedding zone in the CFRD is necessary enough bearing capacity to support the concrete face slab uniformly and enough impermeability to prevent the loss of fine soils in case of leakage from the concrete slab face. Therefore, cut-off the water leakage in bedding zone securely is the key factor influencing the safety of CFRD. Tested materials satisfied with the specification of particle size distribution at the Bedding Zone area are chosen for conducting permeability tests, which are done to evaluate the property of cut off the materials. Based on the test results, the effects of cut off the materials are investigated by considering the coefficient of permeability, the soil particle distribution, and the dry unit weight. Especially, the relationships between coefficient of permeability with effective size(D10), dry unit weight, and weight passing percent the No.4 sieve are suggested, and also the variation of coefficient of permeability with time are proposed.

Effect of Cutting Frequency and Nitrogen Fertilization on Productivity of Reed Canarygrass ( Phalaris arundinacea L.) (유휴 논토양에서 Reed Canarygrass의 생산성에 대한 예취빈도와 질소시비 효과)

  • 조익환;이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.4
    • /
    • pp.407-414
    • /
    • 1997
  • In this study, the optimum cutting 6equency and level of mineral nitrogen fertilization were investigated for the production of Reed canarygrass in uncultivated rice paddy. The results are summarized as follows; 1. Higher relative dry matter yields were recorded in 2nd cut of plots with 3 and 5 cutting frequencies, and 3rd cut of plot with 4 cutting kquency, respectively. 2. With no nitrogen fertilization, mean dry matter yields per year were 6.2~7.6 tonsha and the highest yield appeared in plot with 4 cutting 6equency. 3. The increased fertilization of mineral nitrogen resulted in the increased dry matter yield. Significantly higher dry matter yields than that of no nitrogen fertilization were recorded in fertilization of 90 kg nitrogen per year in 3 cutting fequency, 240 kg in 4 cutting frequency and 150 kg in 5 cutting 6equency respectively. 4. Efficiency of dry matter production with nitrogen fertilization(kg DMkg N) was higher in 30kg Nhalcut in 3 and 5 cutting eequency, 60kg Nhalcut in 4 cutting 6equency respectively. In each cutting kequency, the higher efficiency of dry matter production appeared in 1st cut in 3 cutting kequency, and 2nd cut in 4 and 5 cutting 6equency respectively. 5. Economic N level(kg/ha) was 179.5~242.3kg/ha in 3 cutting 6equency, and 189.6-241.6kg/ha and 167.0 ~253.2kg/ha in 4 and 5 cutting 6equency respectively, and marginal dry matter yields were 11.4~ 12.3 tons/ ha, 11.2 ~ 11.8 tons/ha and 8.3 ~9.1 tons/ha in 3, 4 and 5 cutting 6equency respectively. 6. The limiting N fertilization level to the highest dry matter were estimated to be 569.9kg/ha, 492.4kg/ha and 654.lkg/ha in 3, 4 and 5 cutting kequency respectively.

  • PDF

Friction Welding Analysis of Welding Part Shape with Flow Gallery by Friction Welding (마찰용접에 의해 유동부를 갖는 용접부 형상의 마찰용접해석)

  • Yeom S. H.;Nam K. O.;Yoo Y. S.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.109-112
    • /
    • 2005
  • Friction welding is welding method to use frictional heat of two material. A defect of friction welding is that create flash. The flash is part that must have cut after welding finished. But the welding part with flow gallery by friction welding can't cut flash. Therefore the welding part with flow gallery was designed with no effect in flow. In this research, decide the welding shape parameter of welding part with flow gallery and do friction welding analysis. In friction welding analysis, must input necessary S-S curve, friction coefficient by temperature change, upset pressure, RPM etc. According to analysis result, decided the optimal shape of welding part with no effect in flow.

  • PDF