• Title/Summary/Keyword: No-load speed

Search Result 288, Processing Time 0.03 seconds

An Experimental Study on Effects of EGR Rate upon Exhaust Emissions in Small High-Speed Diesel Engines (소형 고속 디젤기관의 배기 배출물에 미치는 배기 재순환율의 영향에 관한 실험적 연구)

  • 임재근;배명환;김종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.60-77
    • /
    • 1992
  • The effects of exhaust gas recirculation(EGR) on the characteristics of exhaust emissions and specific fuel consumption have been investigated using an eight-cylinder, four cycle, direct injection diesel engine operating at several loads and speeds. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. In conclusion, it is found that $NO_{x}$ emission is markedly reduced with the drop of burnt gas temperature at high speeds and loads especially as the EGR rate increases, while the soot particulate rises with EGR rate and load at a given engine speed, especially high loads. The reduction of exhaust emissions within the Korea heavy duty diesel engine emission standards can be roughly achieved by the optimal EGR rate without degarding the specific fuel consumption, based on the correlations between exhaust emissions.

  • PDF

Development of An Onion Peeler (I) - Root cutting equiment - (양파 박피기 개발(I))

  • 민영봉;김성태;정태상;최선웅;김정호
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2002
  • With a purpose to manufacture an onion peeler, the root cutting equipment of the onion could be attached to a prototype onion peeler was developed. Before the experiment, the distribution of the dimensions of the Korean native onion were measured. And some types of the blades to cut and remove the root of the onion were designed and such characteristics as feasible revolution, conveying speed, and power requirement were investigated. From the result of the test, the selected one among the various cutters was the wing type blade with the round blade to cut out the root and with the vertical blade to cut a circular line. The optimum operating conditions of the wing type blade were revealed the revolution with no load was at 630 rpm, and the conveying speed was 0.08 m/s. Under these conditions, the maximum torque was 5.25 kg·m and the power requirement was 33 W, respectively.

Failure analysis of powder compacting punches made of powder metallurgy high speed steels (분말고속도공구강으로 만든 분말성형펀치의 손상분석)

  • 홍성현
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.78-84
    • /
    • 2000
  • P/M high speed steels(1.28% C, 4.20% Cr, 6.40% W, 5.00% Mo, 3.10% V, bal. Fe) from two different venders were applied to powder compacting punch. The test results show that failure lifes were very different between two punches. These were no difference in volume fraction and mean size of carbides(MC or M6C) but non-metallic inclusions in two punches. Small amount of non-metallic inclusion in the punch did not greatly affect impact energy and transverse rupture strength (TRS). But, fatigue life was drastically decreased by non-metallic inclusions. These results show that fatigue failure was initated around non-metallic inclusion by cyclic load and the fatigue life was greatly affected by the presence of non-metallic inclusions in the punch.

  • PDF

Operation of Brushless DC Motor with Maximun Torque (브러시레스 DC모터의 최대 토오크 운전에 관한 연구)

  • Hyun, D.S.;Shim, J.S.;Hwang, K.O.;Lee, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.133-136
    • /
    • 1988
  • In this paper, the characteristics of brushless DC Motor using voltage source inverter are analysized. The optimal commutation angle for Maximum Torque, the pulse width of supply voltage for available torque and the advanced commutation according to motor speed and electrical time constant effect power factor, efficiency, and no load speed limit.

  • PDF

Performance upgrade and analysis report for nuclear safety related emergency diesel generator speed control system (원전 안전등급 비상디젤발전기 속도제어시스템 성능개선 및 분석에 관한 연구)

  • Kim, Y.S.;Jeon, I.Y.;Lee, S.G.;Kim, C.K.;Ahn, J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.581-583
    • /
    • 2005
  • The paper is final report for speed control upgrade and analysis report which recently performed on PWR NPP safety related EDG KHNP Ulchin NPP No.2 Unit. The upgraded system includes more beneficial function like as 'Slow start with starting ramp', 'Generator load sensing & control capability' and 'Emergency ramp during slow start'. This paper shows functional operation of slow start regime according to NRC regulatory guide which guide regulation to NPP safety related environment.

  • PDF

Machining Characteristics of SKS3 in Wire Cut Electrical Discharge Machining (합금공구강 SKS3의 와이어컷 방전가공 특성)

  • Ko, Beong-Du;Sin, Myong-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.101-106
    • /
    • 2008
  • In the wire cut electrical discharge machining, the optimal machining parameters setting satisfying the requirements of both high efficiency and good quality is very difficult because its process involves a series of complex physical phenomena and the machining parameters are numerous over diverse range. In this paper, the experimental investigation has been performed to find out the influence of the machining parameters on the machining performance such as cutting speed and surface roughness. The selected experimental parameters are no load voltage, discharge peak current and pulse-off time. The experimental results give the guideline for selecting suitable machining parameters.

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.

Consideration about Traffic Characteristics of DV and MPEG2 Streams on IP over ATM (IP over ATM 상에서 DV와 MPEG2 스트림의 트래픽 특성 고찰)

  • Lee, Jae-Kee;Saito, Tadao
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.937-942
    • /
    • 2003
  • In this paper, we measured and examined RTT delays and packet losses according to the changes of stationary loads for two typical stream-type traffics, a DV and a MPGE2 on the R&D Gigabit Network testbed, JGN. As the result of our actual measurements, we realized that the packet size of stationary load have no effects on a DV and a MPGE2 stream on the very high-speed network(50Mbps, IP over ATM). When its bandwidth and stationary load exceeds 95% of network bandwidth, packet losses appeared and RTT delay increased rapidly. Also we realized that the number and size of Receive & Transmit buffer on the end systems have no effects on packet losses and RTT delays.

A Study on Characteristics of Power Generation System Using Biogas from the Waste of Pig Farm

  • Huynh, Thanh-Cong;Pham, Xuan-Mai;Nguyen, Dinh-Hung;Tran, Minh-Tien
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.435-441
    • /
    • 2010
  • To verify the possibility of a power generation system using biogas from the waste of pig farm for rural electric production, a SI gasoline engine is modified to use biogas fuel and was installed in a 20 KVA power generation system. An electronic speed regulation unit is developed to keep the system speed at 1500 rpm. Experimental investigations have been carried out to examine the performance characteristics of power generation system (such as: system frequency, phase output voltage,$\ldots$). In addition, the operating parameters and output emissions ($NO_x$, HC, and $CO_2$) of biogas-fueled engine are preliminary evaluated and analyzed for the change of system load. Results indicated that the researched power generation system shows a high stability of output voltage and frequency with help of speed regulator. Biogas fuel (mainly $CH_4$ and $CO_2$) has an environmental impact and potential as a green alternative fuel for SI engine and they would not require significant modification of existing engine hardware. Output emissions of biogas-fueled engine are found to be relative low. $NO_x$ emission increases with the increase of output electric power of the power generation system.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.