• Title/Summary/Keyword: No-Load Test

Search Result 689, Processing Time 0.027 seconds

Dynamic Analysis of Composite Satellite Antenna Structure for Sine Vibration Test (복합재료 위성안테나의 진동시험을 위한 구조 동해석)

  • ;;;;;Horst Stockburger
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.119-122
    • /
    • 2002
  • The vibration qualification test of satellite antenna is required to verify that there will be no structural damage due to the severe vibration caused by the launch of satellite. For the qualification test, reasonable test load condition needs to be introduced by dynamic analysis. The present work has been performed to provide an understanding how the qualification test load can be evaluated by the results of both normal mode and sine vibration analyses with notching technique for a composite Ka-band antenna structure.

  • PDF

Application of the New Degree of Compaction Evaluation Method (새로운 다짐도 평가기법의 적용성에 관한 연구)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.5-14
    • /
    • 2012
  • CMV(Compaction Meter Value) obtained from compaction results using an accelerometer, which measures the impact on the ground and the resilient force of the ground, is compared with the other degree of compaction through regression analysis. As a result, there is no correlation between results from conventional test methods (e.g., the plate load test and field density test) and the degree of compaction evaluated by either the Geogauge or the dyanamic cone penetrometer. To assess the possibility of replacing the conventional test methods with new test methods using CMV, several degrees of compaction tests were carried out. Those results show that the CMV obtained from compaction results using an accelerometer can be used as a substitute for conventional methods to evaluate the stiffness characteristics of compacted soil.

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.

A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining (싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Chang, Soo-Ho;Bae, Gyu-jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2006
  • This study investigates the failure mechanism and load-carrying capacity of a single-shell lining which has no disturbance in transfer of shear force, with respect to a conventional double-shell lining which has separation between layers of shotcrete lining and secondary concrete lining by water-proof membrane. In order to evaluate the capacity, a 2-D numerical investigation is preliminarily carried out and then real-scale loading tests with tunnel lining section specimens are performed on the condition given by the numerical investigation. In the test, a concentrated load is applied for considering a released ground load or rock wedge load. Through this study, it appears that the single-shell lining takes the load-bearing capacity 20% higher than in case of the double-shell lining. In addition, a possibility of a composite single-shell shotcrete layer composed by multiple bonded layers partly involving different contents of high-capacity additives is shown thereby leading to use of less amount of the high-capacity additives on the condition of taking a similar load-bearing capacity.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (고온화재조건 콘크리트 라이닝의 하중비에 따른 폭렬영향성 및 화재손상특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Ahn, Chan-Sol;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • The fire in tunnel, when failed to extinguish at early stage, tends to easily develop to high temperature and spread to entire area of the tunnel because of considerable level of fire load and smoke control facility within the tunnel, resulting in severe damage to the people and tunnel structure. This study was intended to carry out the fire test with MHC fire curve, a scenario, which has the most rapid fire rise, on assumption of load ratio of 1, 20, 40, 60 and 70%, so as to identify the thermal characteristics of the concrete against spalling and the range of fire damage. The specimen was small scale sample as defined by EFNARC and the mixing ratio was based on 24 MPa, which is considered to be the normal strength. As a result of test, 16mm spalling was occurred on the lining under the non-load condition, while no spalling was occurred with 20% and 40% of load ratio. In case of 60% of load ratio, 24 mm of spalling was occurred and it failed in 10 minutes after heating in case of 70% load condition.

Evaluation of CPT-based Pile Load Capacity Factors with Cylindrical and Taper Pile (원통형 및 테이퍼말뚝의 하중-침하특성 및 CPT지지력상관계수)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Kim, Min-Kee;Hwang, Sung-Wuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.59-68
    • /
    • 2007
  • In this study, evaluation of load capacity and CPT-load capacity parameters were performed using calibration chamber tests for different types of piles including straight-side and tapered piles. Various soil conditions were considered in the investigation, aiming at establishing design procedure for foundation of electronic transmission tower structures. Test results show that no significant difference of total load capacity from straight-side and tapered piles, while individual components of base and shaft load capacities were quite different. Based on the test results, values of CPT-load capacity correlation parameters for different pile types were analyzed for the evaluation of both base and shaft load capacities.

An Ergonomic Study on the Work Loads of Manual Workers (현장근로자의 생체부하에 관한 인간공학적 연구)

  • 이상도;우동필
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.174-180
    • /
    • 1999
  • The objective of this study was to investigate the effects of carrying postures and weight of load carried one time on a worker when carrying heavy loads. Six male students participated in this study to perform a manual materials carrying task as subjects. To make comparison of work loads with physical work capacity, maximal oxygen uptake measurement tests were performed with submaximal test. The average oxygen consumption for the tasks of this study was 27.59~31.93% $VO_2$max. The results showed that the weight of load carried one time affects on working heart rate and oxygen consumption($VO_2$). It was found that the workload was significantly lower when handling a 20kg load at a frequency rate of 3times/min than when handling a 40kg load at a frequency rate of 1.5 times/min. There was no difference between carrying postures. It is concluded from the results of this study that the workload can be reduced by controlling conditions of a manual materials handling task.

  • PDF

An Operating Characteristics of Surface Permanent Magnetic Synchronous Generator for 5-Phase 5kW (5상 5kW 표면부착형 영구자석 동기발전기 운전특성)

  • Jung, Hyung-Woo;Kim, Min-Huei;Song, Hyun-Jik;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.9-16
    • /
    • 2013
  • This paper presents an operating characteristics of the 5-phase 5kW with developed the surface permanent magnetic synchronous generato (SPMSG) in order to make a study of a polyphase ac motors keeping hold of more advantages. There are shown a amplitude and waveform of the generated electromotive force, in FFT analysis of harmonics, within output voltages, and reviewing a experiment results in no-load test, resistive load, and inductive load using 5-phase induction motor by variable output frequency. The operating characteristics of the developed manufacturing generator include voltage regulation, efficiency, power factor, THD, and so on at rated load.

The Experimental Evaluation and Verification of a 300kW Small Engine Cogeneration System (300kW급 가스엔진 열병합발전시스템 성능평가 및 실증)

  • Choi, Jae-Joon;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.332-337
    • /
    • 2009
  • The importance of the evaluation and verification of small-size cogeneration system has been emphasized because there is no KS-code related to the small-size cogeneration system. The evaluation method of small-size engine cogeneration system, regarding Japanese standard JIS B-8122 and international standard organization, ISO-8528, was applied to the system. The evaluation methods, start-test, rapid-load-up and rapid-load-down, etc. were executed at the system, and reasonable results were acquired. The electrical and thermal efficiencies were executed and analyzed at various load conditions. The NOx emission at various load condition was also measured. Finally, the gas engine cogeneration system was installed to a site for actual usage and it was continually operated during more than 6 months as the site condition.

  • PDF

ADHESION STUDIES OF MAGNETRON-SPUTTERED COPPER FILMS ON INCONEL SUBSTRATES

  • Lee, G.H.;Kwon, S.C.;Lee, S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.410-415
    • /
    • 1999
  • The adhesion strength of sputtered copper films to Inconel substrates has been studied using the scratch test. The effects of substrate treatments before deposition such as chemical or ion bombardment etching were investigated by means of a mean critical load derived from a Weibull-like statistical analysis. It was found that the mean critical load was very weak unless the amorphous layer produced by mechanical polishing on the substrate surface was eliminated. Chemical etching in a nitric-hydrochloric acid bath was shown to have practically no effect on the enhancement of the adhesion. In contrast, the addition in this bath of nickel and copper sulphates allowed removal of the amorphous layer and an increase in the values of the mean critical load. However, it was observed that excessive chemical etching could cancel out the mean critical load enhancement. The results obtained in the case of ion bombardment etching pretreatments could be far higher than those obtained with chemical etching. Moreover, for a sufficiently long period of ion bombardment etching, the adhesion strength was so high that it was impossible to observe evidence of an adhesion failure.

  • PDF