• Title/Summary/Keyword: No-Insulation

Search Result 302, Processing Time 0.034 seconds

Performance Standards and Evaluation of Elastomeric Flexible Cellular Insulation (고무 발포 배관 보온 단열재의 성능 기준 및 평가)

  • Jeon, Hyun-Seok;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Lee, Seung-Eon;Jeong, Gwang-Seop
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.614-617
    • /
    • 2009
  • Elastomeric Flexible Cellular Insulation is widely used in construction fields to prevent condensation and frozen pipes, reduce energy, and improve insulation. However, when Elastomeric Flexible Cellular Insulation has been installed in buildings in Korea, there was no standardization, which resulted in heat loss Therefore, insulation design standards need to be developed and from these standards, pipe insulation should be improved to increase its efficiency. This study estimates temperature and surface-emissivity according to the thickness of insulation to evaluate thermal performance.

  • PDF

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.

Assessment of Insulation Aging in 6.6 kV Class High Voltage Motor Stator Windings (6.6 kV급 고압전동기 고정자 권선의 절연열화 평가)

  • Kim, Hee-Dong;Kim, Byong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1067-1071
    • /
    • 2006
  • Prior to destructive testing, diagnostic tests were performed in ten high voltage motors. Diagnostic tests included polarization infer, ac current, dissipation factor$(tan{\delta})$ and partial discharge magnitude. The rewind of motet slater insulation at rated voltage is assessed by the results of these tests. After completing the diagnostic tests, the stator windings of motors were subjected to gradually increasing ac voltage, until the insulation punctured. No. 8 motor failed near rated voltage of 19.0 kV. The breakdown voltage of No. 4 motet was 7.0 kV which is lower that expected for good quality coils in 6.6 kV class motors. The failure was located in a line-end coil at the exit from the core slot. These two motors began operation in 1994. While testing No. 7 motor, flashover occurred between the stator winding and the stator frame at 15 kV. The relationship between the diagnostic test and the drop in insulation breakdown voltage was analyzed.

Analysis of Insulation Aging in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 절연열화 분석)

  • Kim, Hee-Dong;Kong, Tae-Sik;Lee, Young-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.200-203
    • /
    • 2006
  • Prior to destructive testing, diagnostic tests were performed in eight high voltage motors. Diagnostic tests included polarization index, ac current, dissipation factor($tan{\delta}$) and partial discharge magnitude. The rewind of motor stator insulation at rated voltage is assessed by the results of these tests. After completing the diagnostic tests, the stator windings of motors were subjected to gradually increasing ac voltage, until the insulation punctured. No. 1 motor failed near rated voltage of 12.96 kV. The breakdown voltage of No. 4 motor was 6.99 kV which is lower that expected for good quality coils in 6.6 kV class motors. The failure was located in a line-end coil at the exit from the core slot. These two motors began operation in 1994. While testing No. 7 motor, flashover occurred between the stator winding and the stator frame at 15 kV. The relationship between the diagnostic test and the drop in insulation breakdown voltage was analyzed.

  • PDF

Characteristics of Insulation Diagnosis and Failure in Gas Turbine Generator Stator Windings

  • Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.280-285
    • /
    • 2014
  • In order to evaluate the insulation deterioration in the stator windings of five gas turbine generators(137 MVA, 13.8 kV) which has been operated for more than 13 years, diagnostic test and AC dielectric breakdown test were performed at phases A, B and C. These tests included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B and C) of No. 1 generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable and bad level to the insulation condition. Overall analysis of the results suggested that the generator stator windings were indicated serious insulation deterioration and patterns of the PD in all three phases were analyzed to be internal, slot and spark discharges. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. The breakdown voltage at phases A, B and C of No. 1 generator stator windings failed at 28.0 kV, 17.9 kV, and 21.3 kV, respectively. The breakdown voltage was lower than that expected for good-quality windings (28.6 kV) in a 13.8kV class generator. In the AC dielectric breakdown and diagnostic tests, there was a strong correlation between the breakdown voltage and the voltage at which charging current increases abruptly ($P_{i1}$, $P_{i2}$).

Characteristics of Insulation Diagnosis and Failure in 6.6 kV Motor Stator Windings (6.6 kV 전동기 고정자 권선의 절연진단과 절연파괴 특성)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.309-314
    • /
    • 2012
  • To assess the condition of stator insulation, nondestructive and overpotential tests were performed on four high voltage motors. The stator windings under these tests have nominal ratings of 6.6 kV. After completing nondestructive tests, the AC overvoltage applied to the stator windings was gradually increasing until insulation failure in order to obtain the breakdown voltage. No. 1, No. 2, No. 3 and No. 4 of 6.6 kV motors failed near rated voltage of 18.4 kV, 19.8 kV, 19.7 kV and 21.7 kV, respectively. The breakdown voltage of four motors was higher that expected for good quality coils(14.2 kV) in 6.6 kV motors. Almost all of failures were located in a line-end coil at the exit from the core slot. The breakdown voltages and the types of defects showed strong relation to the stator insulation tests such as in the case of AC current, dissipation factor($tan{\delta}$) and partial discharge magnitude.

Characteristics of Insulation Failure in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 절연파괴 특성)

  • Kim, Hee-Dong;Kim, Kyeong-Yeol;Park, Deok-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.124-124
    • /
    • 2010
  • Diagnostic tests were performed on six high voltage motors. These tests included ac current, dissipation factor(tan6) and partial discharge(PD) magnitude. The rewind of motor stator insulation at rated voltage is assessed by the results of these tests. After completing the diagnostic tests, the stator windings of motors were subjected to gradually increasing ac voltage, until the insulation punctured. No. 1 and No.2 motors(4.16 kV) failed near rated voltage of 12.3 kV and 14.2 kV, respectively. The breakdown voltage of No.3 and No.4 motors(6.6 kV) was 17.6 kV and 17.8 kV, respectively. These motors are higher that expected for good quality coils in 6.6 kV class motors.

  • PDF

An Evaluation of Factors Influencing the Thermal Insulation and Evaporative Resistance of a Waterproof and Breathable Garment System (투습방수의류의 보온력 및 증발저항 평가와 관련 변인)

  • Shim, Huen sup
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.4
    • /
    • pp.549-556
    • /
    • 2014
  • This study evaluates the thermal insulation and evaporative resistance of a waterproof and breathable garment system and determines the factors influencing its thermal performance. The experimental garments were composed of underwear (shirts with 100% wool and 100% polyester) and outerwear (jackets and pants with a vapor-permeable membrane and a vapor-impermeable membrane). Data on clothing insulation in a dry condition ($10^{\circ}C$) and a wet condition ($10^{\circ}C$, 40% R.H.), evaporative resistance ($34^{\circ}C$, 40% R.H., and $10^{\circ}C$, 40% R.H.), and microclimate vapor pressure were collected and analyzed. According to the results, the thermal insulation of the experimental garment system ranged 1.27~1.40 in the dry condition and 0.40~0.89 in the wet condition at $10^{\circ}C$. Evaporative resistance ranged $41{\sim}525m^2Pa/W$. A decrease in thermal insulation by wetting underwear ranged 31~67% in the cold condition ($10^{\circ}C$). The breathability of the outer garment influenced the decrease in thermal insulation by wetting. The type of underwear fiber influenced the decrease in thermal insulation only when it was used with breathable outerwear. The vapor-permeable outerwear sample with polyester underwear (P_Perm) showed a larger decrease in insulation than that with wool (W_Perm). The evaporative resistance of the vapor-permeable ensemble showed no effect of underwear in the warm condition ($34^{\circ}C$), but polyester underwear showed lower evaporative resistance than wool in the cold condition ($10^{\circ}C$). The vapor-impermeable ensemble showed no difference in evaporative resistance between polyester underwear and wool underwear in both conditions. Future research should consider various clothing ensemble combinations and environmental conditions and evaluate wear comfort by using human subjects.

A Study on the Floor Impact Sound Insulation Characteristics of Floor Coverings (바닥마감재에 의한 바닥충격음 차음특성 연구)

  • Gi, No-Gab;Kwon, Hyun-Jong;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.368.2-368
    • /
    • 2002
  • It is increasing the interest on the comfortable dwelling environment, while sound insulation performance of materials and elements used in building is falling down as they become thicker and lighter Therefore, sound insulation performance in building has become the most important factor determining the level of housing, especially for apartment that has common wall and floor with next neighbors. (omitted)

  • PDF

Dielectric Characteristics on the interface between insulation and insulation/semiconductor (절연 및 절연/반도전 계면하에서의 유전특성)

  • Kim, Dong-Shick;Kang, Moo-Seong;Jeong, Seong-Yung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1462-1465
    • /
    • 1996
  • This paper evaluated dielectic characteristics on EPR, Polyester and insulation of these different interface. Dielectric characteristics of insulation rubber, Polyester increace greatly according as temperature increases have no effect on applied voltage and pressure. On the condition that interface exists, we confirmed that dielectric characteristics had been influence on semiconductor which had high $tan{\delta}$.

  • PDF