• Title/Summary/Keyword: No concentration

Search Result 10,718, Processing Time 0.04 seconds

A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis (해수 전기분해를 적용한 배연 탈질 기술에 관한 연구)

  • Kim, Tae-Woo;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.570-576
    • /
    • 2012
  • In this study, we investigated the characteristics of NO oxidation using un-divided electrolyzed seawater as oxidant. The concentration of available chlorine and the temperature of electrolyzed seawater are increased with electrolysis time in the closed-loop constant current electrolysis system. While NO gas flow through bubbling reactor which is filled with electrolyzed seawater, the oxidation rate of NO to $NO_2$ is increased with the concentration of available chlorine and the temperature. $NO_2$, generated by oxidation reaction, is dissolved in electrolyzed seawater and existed as $HNO_3{^-}$ ion.

Analysis of Blood Flow-dependent Blood Nitric Oxide Level and Half-life of Nitric Oxide in Vivo

  • Kim Cuk-Seong;Kim Hyo-Shin;Lee Young-Jun;Park Jin Bory;Ryoo Sung-Woo;Chang Seok-Jang;Jeon Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.13-19
    • /
    • 2003
  • Endothelial release of nitric oxide (NO) contributes to the regulation of vascular tone by inducing vascular relaxation. To estimate the blood flow-dependent nitric oxide level and half-life (T1/2) of nitric oxide in vivo state, we investigated the change of aortic NO currents during the change of aortic blood flow rate using NO-selective electrode system and electromagnetic flowmeter in the aorta of anesthetized rats. Resting mean aortic blood flow rate was $49.6{\pm}5.6ml/min$ in the anesthetized rats. NO currents in the aorta were increased by the elevation of blood pressure and/or blood flow rate. When the aortic blood flow was occluded by the clamping, aortic NO currents were decreased. The difference of NO concentration between resting state and occluded state was $1.34{\pm}0.26{\mu}M$ (n=7). This NO concentration was estimated as blood flow-dependent nitric oxide concentration in the rats. Also, while the aortic blood flow was occluded, NO currents were decreased with exponential pattern with $12.84{\pm}2.15$ seconds of time constant and $7.70{\pm}1.07$ seconds of half-life. To summarize, this study suggested that blood flow-dependent NO concentration and half-life of nitric oxide were about $1.3{\mu}M$ and 7.7 seconds, respectively, in the aorta of anesthetized rats. The nitric oxide-selective electrode system is useful for the direct and continuous measurement of NO in vivo state.

  • PDF

Effect of Enzyme Retting on the Fiber Separation of Kenaf Bast - influence of chelator - (효소 레팅에 의한 케냐프 섬유의 분리 -킬레이터의 영향-)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.7
    • /
    • pp.873-881
    • /
    • 2004
  • This research was aimed to investigate the effect of enzyme and the addition of chelators on rotting of the Kenaf bast. Enzyme rotting was effective only when the chelators were added with the enzyme. EDTA was a more effective chelator than oxalic acid under 1% concentration. There was no difference in the rotting effect under different enzyme concentration levels, and under different treatment time and temperature. Therefore, it was found that enzyme rotting can be carried out with low enzyme concentration(0.125%) at room temperature. Retting time can be shortened when higher enzyme concentration and higher temperature are applied. Cellulose I structure of kenaf fiber did not change after enzyme rotting, and different enzyme concentration did not affect the crytallinity structure. Non-cellulosic matters such as hemicellulose, lignin, and pectin were present in the descending order in the enzyme rotted kenaf fiber, and there were no differences in their amounts due to enzyme concentration levels. There was no difference in the dyeabilities of kenaf fiber rotted with different enzyme concentration levels. Enzyme rotted kenaf fiber showed better cyeability when pectin, lignin, and hemicellulose were removed.

The effect of gelatin-coating on embryonic stem cells as assessed by measuring Young's modulus using an atomic force microscope

  • Hyunhee Song;Hoon Jang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.121-130
    • /
    • 2023
  • Background: Coating a culture plate with molecules that aid in cell adhesion is a technique widely used to produce animal cell cultures. Extracellular matrix (ECM) is known for its efficiency in promoting adhesion, survival, and proliferation of adherent cells. Gelatin, a cost-effective type of ECM, is widely used in animal cell cultures including feeder-free embryonic stem (ES) cells. However, the optimal concentration of gelatin is a point of debate among researchers, with no studies having established the optimal gelatin concentration. Methods: In this study, we coated plastic plates with gelatin in a concentration-dependent manner and assessed Young's modulus using atomic force microscopy (AFM) to investigate the microstructure of the surface of each plastic plate. The adhesion, proliferation, and differentiation of the ESCs were compared and analyzed revealing differences in surface microstructure dependent on coating concentration. Results: According to AFM analysis, there was a clear difference in the microstructure of the surface according to the presence or absence of the gelatin coating, and it was confirmed that there was no difference at a concentration of 0.5% or more. ES cell also confirmed the difference in cell adhesion, proliferation, and differentiation according to the presence or absence of gelatin coating, and also it showed no difference over the concentration of 0.5%. Conclusions: The optimum gelatin-coating for the maintenance and differentiation of ES cells is 0.5%, and the gelatin concentration-mediated microenvironment and ES cell signaling are closely correlated.

Damage Characteristics of Korean Traditional Textiles by Nitrogen Dioxide (NO2) Concentrations (이산화질소(NO2) 농도에 따른 전통직물의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Kim, Seojin;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • The gas acceleration test was conducted to identify the deterioration of Korean traditional textiles caused by $NO_2$. Total 20 specimens were prepared using 4 different materials (silk, cotton, ramie, hemp) after dyeing with 5 colors (undyed, red, yellow, blue, black). The specimens were exposed to 0.01, 0.1, 1, 10, 100, and 1000 ppm $NO_2$ gas in the test chamber at $20^{\circ}C$, 50% RH for 1 day. Optical, chemical, and physical evaluation was carried out after the exposure. In the case of Korean traditional textile, color difference increased at 1 ppm/day, $NO_3{^-}$ concentration, carbonyl and C-$NO_2$ functional group increased while pH decreased at 10 ppm/day and tensile strength weakened at 100 ppm/day. when it comes to undyed textile, alteration of color difference on silk and hemp cloth, $NO_3{^-}$ concentration and tensile strength on hemp cloth was remarkable. In addition, color difference on blue and yellow textile, $NO_3{^-}$ concentration increase of yellow textile and tensile strength decrease of hemp cloth & ramie cloth were significant. The results suggest that critical $NO_2$ concentration of optical, chemical, and physical damage on Korean traditional textiles are 1ppm/day, 10 ppm/day, 100 ppm/day respectively.

An Investigation of the Heat Loss Model for Predicting NO Concentration in the Downstream Region of Laminar CH4/Air Premixed Flames (층류 CH4/Air 예혼합화염의 하류영역에서 NO 농도 예측을 위한 열손실 모델의 검토)

  • Hwang, Cheol-Hong;Lee, Chang-Eon;Kum, Sung-Min;Lee, Kee-Man;Shin, Myung-Chul;Kim, Se-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.486-494
    • /
    • 2009
  • One-dimensional modeling of $CH_4$/air premixed flame was conducted to validate the heat loss model and investigate NOx formation characteristics in the postflame region. The predicted temperature and NO concentration were compared to experimental data and previous heat loss model results using a constant gradient of temperature (100 K/cm). The following conclusions were drawn. In the heat loss model using steady-state heat transfer equation, the numerical results using the effective heat loss coefficient ($h_{eff}$) of $1.0\;W/m^2K$ were in very good agreement with the experiments in terms of temperature and NO concentration. On the other hand, the calculated values using the constant gradient of temperature (100 K/cm) were lower than that in the experiments. Although the effects of heat loss suppress NO production near the flame region, a significant difference in NO concentration was not found compared to that under adiabatic conditions. In the postflame region, however, there were considerable differences in NO emission index as well as the contribution of NO formation mechanisms. In particular, in the range of ${\phi}\;{\geq}\;0.8$, the prompt NO mechanism plays an important role in the NO reduction under the adiabatic condition. On the other hand, the mechanism contributes to the NO production under the heat loss conditions.

Combustion Characteristics of a Turbulent Non-premixed Flame Using High Preheated Air (고온 예열 공기에 의한 난류 비예혼합 화염의 연소 특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.561-568
    • /
    • 2003
  • An experiment using high preheated air in a turbulent non-premixed flame was performed to investigate the effects of high preheated air on the combustion characteristics. Combustion using high preheated and diluted air with flue gas is a new technology which enables NO emission to be reduced. In this study, Na was used as diluent and propane as fuel. Combustion characteristics, especially the distributions of the flame temperature, NO concentration and OH radical intensity were examined under the condition of 300 K, 600 K, 1000 K in terms of the combustion air temperature, and also under the condition of the dilution level from 21% to 13% in terms of oxygen concentration. As the preheated air temperature increased, it appeared that the flame length became shorter, maximum flame temperature increased, the reaction region moved to upstream, and NO concentration increased, but the flame temperature's fluctuation was reduced. In opposite, it was shown with decrement of oxygen concentration at the maximum temperature that both maximum value and the gradient of the flame temperature decreased, and NO emission also decreased considerably, but its fluctuation became larger, being inclined to be unstable.

Air Pollution prediction at Highway Tollgate by Using Real Time Traffic Volume (실시간 교통량을 이용한 고속도로 요금소 대기요염도 예측)

  • 박성규;김신도;이정주
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.134-140
    • /
    • 2000
  • The increase in traffic is a worldwide phenomenon. In Korea, it has been increased by 20% per annual in recent 1990’s and approximately 10 millions cars had been registered until 1997. This traffic could easily affect and contribute the local outdoor air quality(QAQ) concerned. The QAQ in highway in one of the examples and the subject in this study. The seoul tollgate located at the north-end of Keypngbu Highway was selected for the study. In case of highway tollgate, the local air pollution could be directly affected by the traffic to approach, wait and start the tollgate. Nitrogen dioxide (NO$_2$) concentration exceeded the EAQS(Environmental Air Quality Standards), but overall indoor air quality was a little better than the outdoor air quality. The measured TSP concentration was much higher than that of the EAQS. To apply a management to a air quality problem of Seoul tollgate, it was predicted air quality with traffic volume and weather condition. It was calculated NO$_2$ emission with traffic volume and predicted in and out of booth by CALINE3 at the Seoul tollgate. To make a comparison between measured and predicted concentration, the prediction was good. It was shown that NO$_2$ concentration was high in the morning at the from Seoul direction and in the evening at the to Seoul direction. it was thought that NO$_2$ concentration variation was reflected according to the traffic volume.

  • PDF

Variation of Concentration of Terpenes in Chrysanthemum boreale (산국에서의 Terpenes 함량의 변이)

  • 김종희
    • The Korean Journal of Ecology
    • /
    • v.20 no.6
    • /
    • pp.397-403
    • /
    • 1997
  • The monoterpenes and sesquiterpenes are analysed in the leaf and stem of Chrysanthemum boreale using gas chromaltography-mass spectrometry (GC-MS). The total amount of sesquiterpenes are always higher than monoterpenes in both leaf (2.0-3.4 times) and stem (1.6-8.3 times). The mono- and sesquiterpenes yields of the leaf are higher than the stem. There was no significant difference among the leaf developmental stages, while those of stem were varied. Seventeen monoterpenes and 9 sesquiterpenes compound in this plants comprised more than 5% of the mean total monoterpenes and the total sesquiterpenes in each dates. Among leaf monoterpenes, the concentration of (+)-Limonene and unknown compound no. 13 (Retention time, R.T.=17.28) varied significantly during leaf growing season, and the concentrafion of unknown compound no. 7 (R.T.=35.04) and no. 9(R.T.=35.71) varied in the leaf sesquiterpenes. Similarly the results from the leaf, the concentration of five monoterpenes in stem also varied significantly during maturing period, and much varied in seven compounds of stem sesquiterpene. The major sesquiterpenes of leaf and stem were ${\alpha}-Humulene$ and compound no. 2(R.T.=26.19).

  • PDF

The Effects of Exhaust Gas Recirculation on Premixed Combustion System (배기가스 재순환 방식이 예혼합 연소시스템에 미치는 영향)

  • Yu, Byeonghun;Lee, Seungro;Kum, Sung-Min;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.1-3
    • /
    • 2013
  • The premixed combustion system applying exhaust gas recirculation was investigated to achieve the low pollutant emission and the high thermal efficiency. In this study, it was studied the effects of EGR on the thermal efficiency, $NO_x$ and CO emissions with various EGR ratios and equivalence ratios. As results, when equivalence ratio was increased, thermal efficiency increased and $NO_x$ and CO concentration increased. When EGR was applied, $NO_x$ and CO concentration decreased and thermal efficiency increased. Especially, in the case of 15% of EGR ratio at 0.85 of equivalence ratio, $NO_x$ and CO concentration will be a smaller than these of a current operating condition of the boiler and thermal efficiency was about 1.7% higher.

  • PDF