• 제목/요약/키워드: No concentration

검색결과 10,706건 처리시간 0.04초

천안시내 지하상가의 이산화질소 및 이산화황 농도 (Concentration of $NO_2$ and $SO_2$ of Underground Shopping Center in Chonan City)

  • 손부순;장봉기
    • 환경위생공학
    • /
    • 제15권1호
    • /
    • pp.102-108
    • /
    • 2000
  • Seasonal variation of $NO_2$ and $SO_2$ concentration was investigated at the underground shopping center in Chonan from October 1997 to August 1998. $NO_2$ and $SO_2$ was collected by personal air sampler at $0.4{\ell}/min$ and $0.5{\ell}/min$ respectively and analyzed using UV spectrophotometer at 550nm and 548nm individually. The results were as follows. 1. The concentration of $NO_2$ was 0.070 ppm in spring, 0.068 ppm in summer, 0.074 ppm in autumn and 0.085 ppm in winter. There was no significant difference. 2. The concentration of $SO_2$ was 0.0233 ppm in spring, 0.0216 ppm in summer, 0.0188 ppm in autumn and 0.0621 ppm in winter. There was significant difference (p<0.01). 3. The higher concentration of $NO_2$ and $SO_2$ gases were shown near the cafeteria (p<0.001, p<0.05). 4. The higher concentration of $NO_2$ was observed at indoor than the underground passage. There was significant difference between two values (p<0.01).

  • PDF

복합생물막 반응기를 이용한 하수처리시 탈질화 특성 (Characteristics of Denitrification from Municipal Wastewater Treatment using a Combined Fixed Film Reactor (CFFR) Process)

  • 이종현;남해욱;김영규;박태주
    • 한국환경과학회지
    • /
    • 제8권1호
    • /
    • pp.107-113
    • /
    • 1999
  • A new biological nutrient removal system combining $A^2/O$ process with fixed film was developed in this work and the characteristics of denitrification were especially investigated in the combined fixed film reactor(CFFR). Media was added in the anaerobic, anoxic and aerobic reactors, respectively. Tests were made to establish the effluent level of $NO_x-N$, COD, DO and nitrite effects on $NO_x-N$ removal in the CFFR by decreasing hydraulic retention time (HRT) from 10.0 to 3.5 hours and by increasing internal recycle ratio form 0% to 200%. The influent was synthesized to levels similar to the average influent of municipal wastewater treatment plants in Korea. SARAN media with a porosity of 96.3% was packed 40% / 130% / 25% based on its reactor volume, respectively. It was found that COD rarely limited dentrification in the anoxic reactor because of high $C/NO_x/-N$ ratio in the anoxic reactor, while DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent inhibited denitrification in the anoxic reactor. It was proved that the critical points of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent were 0.15mg/L and 10%, respectively. As the internal recycle ratio increased, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent increased. Especially, at the condition of internal recycle ratio, 200%, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent exceeded the critical points of 0.15mg/L and 10%, respectively. Then, denitrification efficiency considerably decreased. Consequently, it was represented that the control of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent can assure effective denitrification.

  • PDF

선대 평판형 반응기에서 $NO_2$ 생성에 미치는 $O_2$의 영향 (The influence of $O_2$ concentration on the generation of $NO_2$ by using the wire-plate reactor)

  • 박재윤;김성진;김종달;이선재;하상태;한상보;이동훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2050-2052
    • /
    • 2000
  • In this paper, the effect of $O_2$ concentration on NO removal and $NO_2$ generation by corona discharge from simulated flue gas was measured and estimated for the wire-plate reactor. $NO_2$ removal rate was 0$\sim$30[%] under about 3.4[%] of oxygen concentration, however, it was difficult to remove NOx over 3.4[%] of oxygen concentration. It may be due to generate $NO_2$ from $N_2$ and $O_2$ molecules and converse NO to $NO_2$ by 0 and $O_3$. Magnetic field applied to electric field in plasma was very effective for NOx removal under 2[%] of $O_2$ concentration.

  • PDF

아연계 인산염 피막용액에서 Fe(NO3)2 농도가 SCM430 합금의 전기화학적 거동에 미치는 영향 (Effect of Fe(NO3)2 Concentration on Electrochemical Behavior of SCM430 in Zinc Phosphate Conversion Coating Solution)

  • 권두영;송풍근;문성모
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.233-238
    • /
    • 2019
  • The formation behavior of zinc phosphate conversion coating (ZPCC) on SCM430 alloy was investigated in 25 vol.% of 1M ZnO + 170 ml/L solution containing various $Fe(NO_3)_2$ concentrations, using open-circuit potential(OCP), electrochemical impedance spectroscopy(EIS), cyclic polarization(CP) curve and tape peel test. OCP of SCM430 alloy and corrosion current density increased with increasing $Fe(NO_3)_3$ concentration. Resistance of films formed on SCM430 alloy by chemical conversion treatment decreased with increasing $Fe(NO_3)_3$ concentration. Color and adhesion of chemical conversion coatings became darker and worse, respectively, with increasing $Fe(NO_3)_3$ concentration. It is concluded that addition of $Fe(NO_3)_3$ into a zinc phosphating bath leads to faster reaction to form porous surface coatings with poor adhesion and corrosion resistance.

High Level O2배가스중 NO 저감에 대한 선택적비촉매환원 반응특성에 관한 연구 (A Study on Characteristic of NO Reduction by High Level O2Gas in Selective Non-Catalystic Reaction)

  • 이강우;정종현;오광중
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.577-582
    • /
    • 2002
  • Selective catalytic reduction and selective non-catalytic reduction processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. Especially, the selective non-catalytic reduction process can be operated more economical and designed more simply than the selective catalytic reduction. For this reason, many researchers carried out to increase the removal efficiency of nitrogen oxidants in the condition of low oxygen concentration by using the selective non-catalytic reduction process. However, this study was flue gas contained high oxygen concentration of 20(v/v%) with ammonia as a reducing agent. Moreover, it carried out experiment with many factors that are reaction temperature, retention time, initial NO concentration, NSR(normalized stoichiometric ratio). It was determined optimal operating conditions to improve NO removal efficiency with SNCR process. The De-NOx efficiency was increased with NSR, initial NO concentration and retention time increasement. This study has NO removal efficiency over 80% in the high oxygen concentration as well as low oxygen concentration. The injection of reducing agent may be considered for SNCR process and facility operation in 850$\^{C}$ of optimal condition.

TGA/DSC, DTF를 이용한 미분탄의 산소 연소 및 $NO_x$ 배출 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Oxygen Combustion of Pulverized Coal and the $NO_x$ Formation using TGA/DSC and DTF)

  • 이대근;서동명;노동순;고창복
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.54-59
    • /
    • 2007
  • In a view of capturing $CO_2$ as a greenhouse gas, an experimental study was conducted on the combustion characteristics of pulverized coal in $O_2$/$CO_2$ environment using TGA/DSC and DTF facilities. The effects of gas composition and concentration on the processes of devolatilization and char burning experienced by coal particles in combustion furnace and on the concentration of products such as $CO_2$, CO and $NO_x$ were observed using TGA/DSC and DTF respectively. As results, it were found that the rate of devolitilation is nearly independent on the $O_2$ concentration if it is over 20% but the char burning rate is a sensitive function of $O_2$ percent, and the two rates can be controlled by $O_2$ concentration in order to be similar with those of air combustion case. It was also found that high concentration $CO_2$ can be captured by oxy-coal combustion and high concentration of CO and low value of $NO_x$ are exhausted in that case. Additionally, NO reducing reaction by CO with char as catalyst was observed and a meaningful results were obtained.

  • PDF

일산화질소 (nitric oxide) 정량을 통한 바지락(Ruditapes philippinarum) 의 흔들림 스트레스 측정 (Variation of nitric oxide concentrations in response to shaking stress in the Manila clam Ruditapes philippinarum)

  • 박경일
    • 한국패류학회지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2013
  • 본 연구는 바지락이 흔들림 스트레스에 노출될 경우 나타나는 생리적 변화를 측정하기 위하여 일산화질소량 (NO) 을 측정하였다. 이를 위하여 흔들림 방지 장치가 없는 그룹, NAME (NO 저해제) 를 주사한 그룹, 나일론 섬유 충전재(밀도 $1kg/m^3$) 로 흔들림이 방지된 그룹 등 총 3개 그룹으로 나눈 후 교반기에서 100 rpm으로 6시간동안 교반 한 후 DAF assay와 Griess assay를 이용하여 바지락 혈림프액의 NO 농도를 측정하였다. 조사결과 흔들림 스트레스에 노출된 바지락에서 NO 농도가 급격히 증가하였고 반면 NO 저해제가 주입된 바지락에서는 NO 농도가 감소하였다. 또한 흔들림 방지 장치가 들어간 그룹에서 NO 농도가 감소함이 확인되었다. 이러한 결과는 DAF assay와 Griess assay 실험에서 모두 동일하게 나타났다. 결론적으로 NO 측정은 바지락의 생리적 스트레스를 측정하는데 유용한 방법임이 확인되었으며, 형망에 의한 바지락 채취시나 수하식으로 양식할 경우 흔들림에 의한 스트레스를 방지할 수단이 필요함을 시사하였다.

Plasma반응에 의한 NOx와 Ozone의 특성에 관한 연구 (A Study on Characteristics of NOx and Ozone by Plasma Reaction)

  • 최재욱;산외서수;최재진
    • 한국가스학회지
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2000
  • 가스중에 포함되어 있는 NOx를 안전하게 처리하기 위하여 침상전극을 취부한 플라즈마 반응기를 제작하여 장치의 특성을 실험적으로 조사하여 유효성을 검정하였다. 반응가스는 $NO/N_2$ 혼합가스와 $N_2/O_2$ 혼합가스를 이용하여 초기 NO농도를 설정하고, 유속을 2${\iota}$/min으로 공급하였다. NOx의 반응특성은 방전주입전력이 높을때는 NO의 농도가 감소하였으며, 산소의 농도 증가시에 NO의 분해가 용이하고 NO의 분해에너지 효율이 높았다. 또한 NO의 농도가 증가할 수록 NO의 분해에너지 효율은 높으나 분해율은 낮았다. 오존의 특성은 방전주입전력이 높을수록 오존의 생성이 증가하고, $NO/N_2$의 농도가 증가할 수록 오존의 생성량이 감소하였다.

  • PDF

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E3호
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

장기 NO2 및 SO2 Passive Diffusive Sampler(PDS)를 이용한 대전시 대기질 모니터링 (Air Quality Monitoring in Daejeon City with Long-Term NO2 and SO2 Passive Diffusive Samplers)

  • 임봉빈;김선태;정재호;이범진
    • 한국환경과학회지
    • /
    • 제16권2호
    • /
    • pp.187-195
    • /
    • 2007
  • Long-term passive diffusive samplers(PDS) have been used to measure $NO_2\;and\;SO_2$ concentrations at 21 sampling sites in Daejeon, Korea during the period of January 2000 - December 2002. The spatial distributions of annual $NO_2\;and\;SO_2$ concentrations were mapped. Average annual $NO_2$ concentration over the sampling period was $28.5{\pm}12.5\;ppb$, ranging from 1.2 to 81.7 ppb. Average annual $SO_2$ concentration over the sampling period was $7.7{\pm}4.8\;ppb$, ranging from 0.6 to 26.8 ppb. On average, $NO_2$ concentration was approximately 5.8%(1.6 ppb) larger in 2002. $SO_2$ concentration was decreased by 13%(1.1 ppb) during the sampling period. The seasonal variation of $NO_2\;and\;SO_2$ concentration was observed with a tendency to be higher in fall and winter. $NO_2\;and\;SO_2$, concentrations measured at different site types(patterns of land use) show significant difference. The observed difference in concentration was associated with difference in emissions of $NO_2$ from motor vehicles and $SO_2$ by non-traffic fuel consumption for heating.