• Title/Summary/Keyword: Nitrous oxide($N_2O$)

Search Result 203, Processing Time 0.023 seconds

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition (아산화질소 촉매 분해 특성 연구)

  • Yong, Sung-Ju;Park, Dae-Il;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.58-61
    • /
    • 2009
  • The characteristics of nitrous oxide catalytic decomposition were studied to utilize the nitrous oxide as a propellant. The Ru and Pt were selected as nitrous oxide decomposition catalysts and loaded in the $Al_2O_3$ support using an impregnation method. The nitrous oxide conversions as a variation of GHSV and reaction temperature were measured in a tubular reactor. At the low GHSV and high temperature, the conversion was increased, and Ru/$Al_2O_3$ catalyst showed better performance than Pt/$Al_2O_3$ catalyst.

  • PDF

Complications caused by nitrous oxide in dental sedation

  • Chi, Seong In
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.2
    • /
    • pp.71-78
    • /
    • 2018
  • The first clinical application of nitrous oxide ($N_2O$) was in 1844, by an American dentist named Horace Wells who used it to control pain during tooth extraction. Since then, $N_2O$ has shared a 170-year history with modern dental anesthesia. $N_2O$, an odorless and colorless gas, is very appealing as a sedative owing to its anxiolytic, analgesic, and amnestic properties, rapid onset and recovery, and, in particular, needle-free application. Numerous studies have reported that $N_2O$ can be used safely and effectively as a procedural sedation and analgesia (PSA) agent. However, $N_2O$ can lead to the irreversible inactivation of vitamin B12, which is essential for humans; although rare, this can be fatal in some patients.

Investigation on emission characteristics of nitrous oxide from marine diesel engine (선박용 디젤엔진에서 아산화질소의 배출특성에 대한 연구)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1051-1056
    • /
    • 2014
  • Nitrous oxide ($N_2O$) is naturally generated from biological activity, such as bacteria's material exchange. However, recent $N_2O$ concentration in the atmosphere has being increased by the human activities such as industrial growth. One of factors to increase $N_2O$ concentration in the atmosphere is a $N_2O$ emission caused by the combustion of marine fuel oils. The marine transportation presently handles over 99 percent of the international freight cargoes and the number of ship is continuously increasing with increment of cargoes. In this study, author conducted a series of the experimental investigations on which combustion of fuels containing different element concentrations used in a 4-stroke marine diesel engine affect $N_2O$ emissions in the exhaust gas. Moreover, it is assessed on the extent to which fuel combustion patterns in the combustion chamber affect $N_2O$ emissions.

Effect of Aeration on Nitrous Oxide ($N_2O$) Emission from Nitrogen-Removing Sequencing Batch Reactors

  • Kim, Dong-Jin;Kim, Yuri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this study, nitrous oxide ($N_2O$) emission was compared between the operations of two different sequencing batch reactors, conventional sequencing batch reactor (CNVSBR) and simultaneous nitrification and denitrification sequencing batch reactor (SND-SBR), using synthetic wastewater. The CNV-SBR consisted of anoxic (denitrification) and aerobic phases, whereas the SND-SBR consisted of a microaerobic (low dissolved oxygen concentration) phase, which was achieved by intermittent aeration for simultaneous nitrification and denitrification. The CNV-SBR emitted 3.9 mg of $N_2O$-N in the denitrification phase and 1.6 mg of $N_2O$-N in the nitrification phase, resulting in a total emission of 5.5mg from 432mg of $NH_4^+$-N input. In contrast, the SND-SBR emitted 26.2mg of $N_2O$-N under the microaerobic condition, which was about 5 times higher than the emission obtained with the CNV-SBR at the same $NH_4^+$-N input. From the $N_2O$ yield based on $NH_4^+$-N input, the microaerobic condition produced the highest yield (6.1%), followed by the anoxic (0.9%) and aerobic (0.4%) conditions. It is thought that an appropriate dissolved oxygen level is critical for reducing $N_2O$ emission during nitrification and denitrification at wastewater treatment plants.

Physical Solubility of Nitrous Oxide in Aqueous Amine Solutions

  • Park, Moon-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.137-142
    • /
    • 1999
  • One of the most important parameters required to model the absorption of CO2 into aqueous alkanolamine solutions is physical solubility. However, since CO2 reacts in amine solutions, its physical solubility cannot be measured directly. As a result, a nonreacting gas which is similar to CO2 has to be used such as N2O. The solubility of nitrous oxide (N2O) in aqueous solutions of 0wt%-50wt% MDEA, 0wt%-30wt% DEA, and 50wt % total amine with DEA/MDEA molar ratios of 0.05, 0.25, 0.5 and 0.67 was measured using a modified Zipperclave reactor over a temperature range of 293-353 K with near atmospheric partial pressures of N2O. the solubility data from this work were K with near atmospheric partial pressures of N2O. The solubility data from this work were found to be in good agreement with previously reported data where available.

  • PDF

Effect of Fuel Injection Timing on Nitrous Oxide Emission from Diesel Engine (디젤엔진에서 연료 분사시기가 아산화질소에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.106-112
    • /
    • 2014
  • The diesel engine, which has high compression ratio than other heat engines, has been using as the main power source of marine transport. Especially, since marine diesel engines offer better specific fuel consumption (SFC), it is environment-friendly compared to those used in other industries. However, attentio should be focused on emissions such as nitrous oxide ($N_2O$) which is generated from combustion of low-grade fuels. Because $N_2O$ in the atmosphere is very stable, the global warming potential (GWP) of $N_2O$ is 310 times as large as that of $CO_2$, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. It has been hitherto noted on the $N_2O$ exhaust characteristics from stationary power plants and land transportations, but reports on $N_2O$ emission from the marine diesel engine are very limited. In this experimental study, a author investigated $N_2O$ emission characteristics by using changed diesel fuel components of nitrogen and sulfur concentration, assessed on the factors which affect $N_2O$ generation in combustion. The experimental results showed that $N_2O$ emission exhibited increasement with increasing of sulfur concentration in fuel. However, all kinds of nitrogen component additives used in experiment could not change $N_2O$ emission.

Production of Nitrous Oxide in Tatara Estuary Receiving Treated Wastewater (하수처리수의 방류를 받는 하천감조부에서의 N2O생성)

  • Lee, Seung-Yoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.631-641
    • /
    • 2009
  • Transport of nitrous oxide and treated waste water was investigated in an estuary receiving treated waste water. Seasonal change of water quality were also observed to assure origins of $N_2O$ and to estimate the influence of treated waste water on $N_2O$ production in the survey area. Based on nitrous oxide concentration profiles in the survey area, discharged treated waste water were traced, which flowed upstream at the flood tide and downstream at the ebb tide with concentration maxima. It is assumed that nitrous oxide discharged from treated waste water is transported to the survey area with partial and vertical mixture. To determine the production of $N_2O$ in survey area, flux at each sampling sites were calculated and 25% of the produced $N_2O$ was originated from treated waste water in result. The remaining percentage of the production was also assumed to be the discharge from the sediment layers.

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition for Propellant Applications (추진제 응용을 위한 아산화질소의 촉매 분해 특성 연구)

  • Kim, Tae-Gyu;Yong, Sung-Ju;Park, Dae-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • The study on the characteristics of nitrous oxide catalytic decomposition was carried out to utilize the nitrous oxide as a propellant. The Pt, Ir and Ru were synthesized to select a high performance catalyst for the nitrous oxide decomposition reaction. The respective catalyst precursors were loaded in the $Al_2O_3$ support using an wet impregnation method. The $N_2O$ conversion as a variation of space velocity and reaction temperature was measured using a tubular reactor. The catalyst loss was measured to evaluate the durability of catalysts after the reaction at $800^{\circ}C$ for 2 hours. The $N_2O$ conversion was increased at the decrease of space velocity and at the increase of temperature. The Ru/$Al_2O_3$ catalyst had the highest $N_2O$ conversion at low temperature and the best durability.

Nitrous Oxide Enhances the Level of Sensory Block by Epidural Lidocaine (리도카인을 이용한 경막외 마취시 Nitrous Oxide가 감각차단에 미친 영향)

  • Goo, Young-Gwon;Woo, Soo-Young;Cho, Kang-Hee
    • The Korean Journal of Pain
    • /
    • v.12 no.1
    • /
    • pp.43-47
    • /
    • 1999
  • Backgroud: Systemic administration of opioid can prolong the duration of epidural anesthesia. The authors examined the effect of nitrous oxide ($N_2O$) on the level of sensory block induced by epidural lidocaine. Methods: Twenty minutes after epidural injection of 2% lidocaine (below 70 years : 20 ml, 70 years and above : 15 ml), the level of sensory block was assessed (2nd stage). Patients were randomly assigned to receive either medical air (control group, n=15) or 50% $N_2O$ in oxygen ($N_2O$ group, n=15) for 10 minutes, the level of block was reassessed (3rd stage). Pateints were given room air (control group) or 100% oxygen for 5 minutes and room air for 5 minutes ($N_2O$ group), and the level of block was reassessed (4th stage). Results: At the 3rd stage, $N_2O$ group showed 4.3 cm cephalad increase in the level of sensory block (p=0.005), but control group revealed 1.43 cm regression. After discontinuation of gas, the level of block regressed in both group (p=0.000). At the 4th stage, $N_2O$ group revealed 3.5 cm cephalad increase (p=0.048) and control group 1.97 cm regression (p=0.001) as compared with the 2nd stage. Conclusions: The level of sensory block induced by epidural lidocaine was significantly increased cephalad by concommitant use of 50% $N_2O$ for 10 minutes.

  • PDF

Effect of Mixed Treatment of Urea Fertilizer and Zeolite on Nitrous Oxide and Ammonia Emission in Upland Soil

  • Park, Jun-Hong;Park, Sang-Jo;Seo, Young-Jin;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.368-373
    • /
    • 2014
  • Ammonia loss from urea significantly hinders efficient use of urea in agriculture. The level of nitrous oxide ($N_2O$) a long-lived greenhouse gas in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. There are reports in the literature showing that the addition of zeolite to N sources can improve the nitrogen use efficiency. This study was conducted to evaluate nitrous oxide ($N_2O$) and ammonia ($NH_3$) emission by mixed treatment of urea and zeolite in upland crop field. Urea fertilizer and zeolite were applied at different rates to study their effect on $N_2O$ emission during red pepper cultivation in upland soils. The $N_2O$ gas was collected by static closed chamber method and measured by gas chromatography. Ammonia concentration was analyzed by closed-dynamic air flow system method. The total $N_2O$ flux increased in proportion to the level of N application. Emission of $N_2O$ from the field increased from the plots applied with urea-zeolite mixture compared to urea alone. But urea-zeolite mixture treatment reduced about 30% of $NH_3$-N volatilization amounts. These results showed that the application of urea and zeolite mixture had a positive influence on reduction of $NH_3$ volatilization, but led to the increase in $N_2O$ emission in upland soils.