• Title/Summary/Keyword: Nitrogenous compound

Search Result 24, Processing Time 0.026 seconds

Studies on Reduction of Harmful Compound and Combustibility of $Na_3$ Citrate-treated Cigarette (시트르산나트륨첨가(添加)에 의(依)한 담배의 연소성(燃燒性) 및 유해물감소(有害物減少)에 관한 연구(硏究))

  • Kim, Ki-Hwan;Bae, Hyo-Won;Lee, Yong-Chong;Kim, Man-Uk;Park, Taek-Kyu
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.117-122
    • /
    • 1977
  • Development of new burning additives against nitrate salts used in past tobacco industry examined to reduce harmful nitrogenous compounds in smoke. Among several additives treated, the best effect by means of elevation of combustibility and reduction of tar and nicotin contents in smoke was observed by adding sodium citrate from 0.6 to 1% in tabacco. The following results were obtained through investigating combustibility, chemical composition, and differential thermal analysis of the tabacco treated with the buring additives. 1) The close relation was observed between the levels of the smoke components and combustibility of the treated tabacco. 2) Differential thermal analysis (D.T.A.) of citrate-treated tobacco shows an increase in H. Value and a decrease in L. Value as compared with other tobacco sample. 3) The D.T.A. of sodium-nitrate and sodium-citrate shows that sodium-nitrate gives endothermal reaction at $270^{\circ}$ and $310^{\circ}$ and sodium citrate gives exothermal reaction at $290^{\circ}$ with endothermal reaction at $170^{\circ}\;and\;310^{\circ}$. 4) $Na_3-citrate-treated$ tobacco shows an increase in smoke generation between room temperature and $350^{\circ}$ (Zone A) and a decrease in smoke generation between $350^{\circ}$ and $900^{\circ}$ (Zone B) compared with untreated tobacco. The smoke from these tobacco also contains lower levels of Tar, Nicotine, Phenols, Nitrogen oxides and Benzpyrene, and elevation of static Burning rate.

  • PDF

STUDIES ON THE VARIATION OF MICROFLORA DURING THE FERMENTATION OF ANCHOVY, ENGRAULIS JAPONICA (멸치 젓갈 숙성에 따른 미생물상의 변화에 대하여)

  • LEE Jong-Gap;CHOE Wi-Kyune
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.105-114
    • /
    • 1974
  • Identification and change of microflora during the fermentation of anchovy Engraulis japonica, under the halophilic circumstance were investigated. The change of salinity and pH in meat and juice which decide the environment for microorganism and decomposition of nitrogenous compound which functions as a nutrient source were also discussed by measuring the content of total-N, amino-N, nonprotein-N, TMA and VBN, The fresh anchovy was mixed with rock salt (20 percent w/w) and stocked for six months. Through the fermentation lag phase of viable cells extended for 20 days that was obviously larger compared with other circumstances, hereafter increased to reach the maximum value of $5\times10^4$ total count per gram at 35 day stock. The stationary phase proceeded for 25 days. 540 strains were isolated and among them 11 genus of bacteria, 3 genus of yeasts, were identified and other 2 yeast strains of unidentified. At the initial stage of fermentation, Pseudomonas, and Helobacterium prevalently grew, at the middle stage, they disappeared rapidly and Pediococcus and yeasts completely dominated, where they are assumed to get directly involved with fermentation of fish, The PH value tended to decrease in the progress of fermentation and at 100 day stock it showed the minimum value of 5.5 to 5.6 in both meat and juice. The highest salinity of meat decreased to 18 percent, while in juice it decreased to 28 percent since 50 days stock. The content of total-N in meat gradually decreased to 2.8 percent, while in juice it increased to 2.3 percent at 100 day stock, However nonprotein-N was 1.8 percent and amino-N was 1.1 Percent. Since 100 days stock, the increasing rate of amino-M is too low it could be judged to entered the final stage of fermentation, In the first 20 days stock, the increase of VBN and TMA can be explained by the growth of putrefactive bacteria such as pseudomonas on the meat before salts penetrate into the fish meat, while reincrement after 100 days stock, is explained by decomposition of free amino acid due to the reactions of bacteria and enzymes.

  • PDF

Tree Growth and Nutritional Changes in Senescing Leaves of 'Fuyu' Persimmon as Affected by Different Nitrogen Rates during Summer (여름 질소 시비량에 따른 '부유' 감나무의 생장과 노화 중 잎의 양분 변화)

  • Choi, Seong-Tae;Park, Doo-Sang;Ahn, Gwang-Hwan;Kim, Sung-Chul;Choi, Tae-Min
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.706-713
    • /
    • 2013
  • With pot-grown 4-year-old 'Fuyu' persimmon trees, this study evaluated the effect of different nitrogen (N) rates during summer on fruit characteristics, changes of leaf nutrients after harvest, reserve accumulation, and early growth the following year. A total of 0, 36 g N in June, and 72 g N in June and July was fertigated to each tree using urea solution. All the fruits were harvested on Nov. 3. Although not significant, fruits were larger for the 36 g and 72 g N than the 0 g N. Fruits for the 0 g N, having lower N concentration, were softer and had a better coloration and higher soluble solids, indicating that they matured earlier. SPAD value on Nov. 3 was 19.2 for the 0 g N and 54.9 for the 72 g N, and then the values linearly decreased in all the treatments by Nov. 14, exhibiting rapid leaf senescence. Specific leaf weight, being the lowest for the 0 g N, also gradually decreased during this period. Increasing N level significantly increased cross-sectional area of the trunk. Leaf N concentration on Nov. 3 was 0.87% for the 0 g N, whereas it was 1.18 and 1.52% for the 36 g and 72 g N, respectively. The N fertigation tended to increase leaf concentrations of soluble sugars, starch, and amino acids. Contents of N, P, K, soluble sugars, starch, and amino acids per unit leaf area gradually decreased in all the treatments during the 11 days after harvest, and the extent of the decrease was the lowest for the 0 g N. On the other hand, those of Ca, Mg, and protein did not consistently change during this period. The N fertigation resulted in higher concentrations of N in dormant shoots on Nov. 14, and although not great, it also increased soluble sugars, starch, amino acids, and protein. Clear differences were found in number of flower buds per one-year-old branch and total shoot length per tree the following year. The 72 g N trees had 5.6-fold more flower buds and 1.9-fold more shoot length, compared with those of 0 g N trees. However, it was noted that tree growth the following year was not significantly different between the 36 g and 72 g N the previous year. It was concluded that N rate during summer should be adjusted with considering the changes of fruit maturation, mobilization of leaf nutrients, and reserve accumulation.

Changes in Organic and Inorganic Nutrients in Terminal Shoots of 'Fuyu' Persimmon during Spring Growth (감나무 정단신초의 봄 생장 동안 유기 및 무기 양분의 변화)

  • Yoon, Young-Whang;Choi, Seong-Tae;Park, Doo-Sang;Rho, Chi-Woong;Kim, Dae-Ho;Kang, Seong-Mo
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • To understand changes in composition and distribution of nutrients during early shoot growth of persimmon, organic compounds and inorganic elements of terminal shoots were analyzed for about 40 days from the time of foliation. Sample shoots were collected from mature 'Fuyu' trees for this three-year experiment and they were divided to stem, leaves, and the fruits including flower buds at the earliest stage. During shoot growth, concentration of soluble sugars increased in both leaves and fruits, but that of starch increased only in leaves. Those of amino acids tended to decrease in all the parts but there was no consistent change in proteins. As shoots grew, contents of all the organic compounds in a shoot increased, and they were especially higher in May leaves accounting for more than 60% of the shoot total for each nutrient. Along with shoot growth, concentrations of N and P gradually decreased in all three parts, while K decreased only in stem. However, those of Ca and Mg did not show notable changes in all the parts with wide variations depending on the year. Due to the quantitative increase in growth, contents of inorganic elements in a shoot increased in all the parts and the leaves accounted for 54-82% of the shoot total. At the cessation time of extension growth, a shoot contained 526-768 mg of soluble sugars, 245-844 mg of starch, 26-31 mg of amino acids, and 66-103 mg of proteins for three years. On the other hand, a shoot contained 203-388 mg of K, the greatest among the inorganic elements, followed by 132-159 mg of N. Changes of the nutrients in a shoot were much greater during the earlier stage of growth after foliation than during the later stage toward growth cessation, suggesting the importance of mobilizing reserve nutrients for the early growth of the shoots. The results of this study also suggested that the rate of nutrient changes, especially during the earlier stage of shoot growth, could be affected by environmental and cultural conditions.