• Title/Summary/Keyword: Nitrogen transformation

Search Result 98, Processing Time 0.026 seconds

The effect of artemisinin on the rabbit IgG accelerated nephrotoxic serum glomerulonephritis in mice (개똥쑥에서 분리(分離)된 artemisinin이 가토(家兎) IgG에 의해 유발(誘發)된 생쥐의 현독성(賢毒性) 혈청사구체현염(血淸絲球體賢炎)에 미치는 영향(影響))

  • Zhu, Quan
    • Journal of Haehwa Medicine
    • /
    • v.4 no.2
    • /
    • pp.335-336
    • /
    • 1996
  • Artemisinin, a new antimalarial to treat patients infected with strains of Plasmodium jalciparum, derived from the plant Artemisia annua Linn, has immunopharmacologic actions such as enhence the PHA -induced lymphocyte transformation rate, increased the weight of spleen but reduced the weight of thymus, reduced phagocytic function of peritoneal macrophage, remarkably reduced the level of serum IgG and hemolysin fonning capacity (sentitized with SRBC), inhibited the activity of Ts cells of donor mice by supraoptimal immunuization(SOI), but enhenced activity of Ts cells of recipient mice by SOI. These results suggested that Ts cells may be the target cells of artemisinin. To the serum complement C3 level of plasmodium berghei-infeted mice, artemisinin (i. m,) could remarkly increase it. The artemisinin also obviously reduced the prostaglandin E(PGE) in the mouse hind paw swelling induced by carrageenin. Numerous studies have demonstrated that pharmacologic doses of PGE attenuate the development of immunocomplex nephritis. Some autologous immune mechanisms may be invoolved In the pathogensis of some types of glomurulonephritis. Glomerular abnormalities can be induced in animals by variety of immunological manipulations. The resulting disorder has many clinical and pathogical similarities to the disease in human. Our purpose was therefore to test the ability of the artemisinin to lessen the severity of rabbit IgG accelerated nephrotoxic serum glomerulonephritis in mice model. Mice which had treated with rabbit IgG and NTS, administrated with saline, showed Significant inceases of urinary protein, cholesterol level, and decrease of serum albumin in NS group. On the contrary, By i.g. adminstration of artemisinin at dose of 12.5, 25 and 50 mg/kg for 14 days after NTS injection, shown that artemisinin inhibited the nephritic changes in some parameters by means of urinary protein(p<0.05, p<0.01) and serum choleterol(p<0.05, p<0.01) and albumin (p<0.05, p<0.01), blood urea nitrogen (p<0.05, p<0.01), serum albumin(p<0.05, p<0.01); Cyclophosphamide(i.p. 10mg/kg for 14d) had almost same effect as the artemisinin had. Morphological studies shown that The picture of kidney from the mouse with NTS-nephritis accerated with rabbit IgG, treated with i.g. saline as the control, the mesangiocapillary were enlarged and proliferated; There were inflammatory cells infiltrating around the glomeruli; The ethelial cell were proliferated in the wall of Bowman's capsule. Histopatholological picture of kidney from the NTS-nephritis accerated with rabbit IgG mouse treated with i.p. 10mg/kg cyclophosphamide as the positive control. No siginicant histopathological evidence were found. Treaded with i.p. 12.5mg/kg artemisinine, the picture shown that mesangiocapillary were lightly proliferated; There were inflammatory cells infiltrating around the glomeruli; Treaded with i.p. 25mg/kg artemisinine, The picture shown that the mesangiocapillary were lightly proliferated; Treaded with i.p. 50mg/kg artemisinine, The picture shown that both the mesangiocapillary proliferated and the inflammatory cells infiltrating around the glomeruli are less than treated with saline, 12.5 and 25 mg/kg artemisinine. On the basis of these studies we conclude that the artemisinin can relieve pathological change caused by NTS-nephritis aacerated with rabbit IgG.

  • PDF

Effect of Core Morphology on the Decomposition of CCI₄ over the Surface of Core/Shell Structured Fe₂O₃/MgO Composite Metal Oxides

  • 김해진;강진;박동곤;권호진;Kenneth J. Klabunde
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.831-840
    • /
    • 1997
  • Core/shell structured composite metal oxides of Fe2O3/MgO were prepared by thermal decomposition of Fe(acac)3 adsorbed on the surface of MgO cores. The morphology of the composites conformed to that of the MgO used as the cores. Broad powder X-ray diffraction peaks shifted toward larger d, large BET surface area (∼350 m2/g), and the size of crystalline domains in nano range (4 nm), all corroborate to the nanocrystallinity of the Fe2O3/MgO composite which was prepared by using nanocrystalline MgO as the core. By use of microcrystalline MgO as the core, microcrystalline Fe2O3/MgO composite was prepared, and it had small BET surface area of less than 35 m2/g. AFM measurements on nanocrystalline Fe2O3/MgO showed a collection of spherical aggregates (∼80 nm dia) with a very rough surface. On the contrary, microcrystalline Fe2O3/MgO was a collection of plate-like flat crystallites with a smooth surface. The nitrogen adsorption-desorption behavior indicated that microcrystalline Fe2O3/MgO was nonporous, whereas nanocrystalline Fe2O3/MgO was mesoporous. Bimodal distribution of the pore size became unimodal as the layer of Fe2O3 was applied to nanocrystalline MgO. The macropores in a wide distribution which the nanocrystalline MgO had were absent in the nanocrystalline Fe2O3/MgO. The decomposition of CCl4 was largily enhanced by the overlayer of Fe2O3 on nanocrystalline MgO making the reaction between nanocrystalline Fe2O3/MgO and CCl4 be nearly stoichiometric. The reaction products were environmentally benign MgCl2 and CO2. Such an enhancement was not attainable with the microcrystalline samples. Even for the nanocrystalline MgO, the enhancement was not attained, if not with the Fe2O3 layer. Without the layer of Fe2O3, it was observed that the nanocrystalline domain of the MgO transformed into microcrystalline one as the decomposition of CCl4 proceeded on its surface. It appeared that the layer of Fe2O3 on the particles of nanocrystalline Fe2O3/MgO blocked the transformation of the nanocrystalline domain into microcrystalline one. Therefore, in order to attain stoichiometric reaction between CCl4 and Fe2O3/MgO core/shell structured composite metal oxide, the morphology of the core MgO has to be nanocrystalline, and also the nanocrystalline domains has to be sustained until the core was exhausted into MgCl2.

Studies on the Nitrogen Metabolism of Soybeans -III. Variation of Glutamic acid, Aspartic acid and its Amides during the Growth of Yonger Plants (대두(大豆)의 질소대사(窒素代謝)에 관(關)한 연구(硏究) -III. 유식물(幼植物) 시기(時期)에서의 Glutamine 산(酸)과 Asparagine 산(酸) 및 그 Amide의 소장(消長))

  • Kang, Y.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.55-59
    • /
    • 1970
  • In an effort to determine the bio-synthesis in the soybean as investigate to the variance of each substance: Glutamic acid, Aspartic acid and its amides during the growth of younger soybean plants. 1. The variance-curve of Gultamic acid and Aspartic acid as the acidic amino acids in the cotyledons was appeared the peak the first half period at Glutamic acid and the latter half at Aspartic acid in the growth of soybeans, and was received the symmetrical impression centering around the stage of adult leaf-development. But, in the embryonic organ, it appears the peak at both part, in the developmental stage of adult leaf and also appears near phenomena of increase and decrease in the variation-curve of metabolites. 2. It's amides-Gultamine and Asparagine-appears the peak at the developmental stage of adult leaf in the both cotyledons and embryonic organ, and rapid increase in the cotyledons were very impressed compare with the decrease at fallen stage of cotyledons in the embryonic organs. 3. In the relation of variance at Glutamic acid and Aspartic acid, both substance were discovered the fact of translocation from cotyledon to embryonic organ, and Glutamic acid could supposed that bear the charges of outrider substance in other amino acid as the Glutamic acid-self and major basic function for receiving the ammonia as the nitrogen contain constituent of plant. In the case of Glutamine, formation-mechanism of ammonia which develops due to its hydrolysis in the latter period of soybean growth, suggested that was forfeit its function till instance of fallen cotyledons. 4. In the relation the Aspartie acid and Asparagine, Aspartic acid which begins to decrease from seed-state was supposed that bear sufficiently the charge of outrider substance in the formation of Asparagine other than translocated to embryonic organ from cotyledon. And, formation-theory of Aspartic acid which suppose as formational substance from Kreb's cycle were recognized from latter period of soybean growth, and then, rapid accumulation of Asparagine's amounts were supposed that adapt to two theory: Theory which consider to transformation as Asparagine state for pressing to less than noxious weight the concentration of ammonia developing from the cells, and was formate and accumulate as ammonia or carbohydrates containing excess in the cotyledons.

  • PDF

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Natural 15N Abundances of Corn Treated with Urea and Composted Pig Manure in a Pot Experiment (요소와 돈분퇴비 시용에 따른 포트 재배 옥수수의 질소동위원소 자연존재비 차이)

  • Choi, Woo-Jung;Lee, Sang-Mo;Kim, Kyoung-Cheol;Kim, Pan-Gun;Yoo, Ji-Hyeok;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.284-291
    • /
    • 2001
  • To study whether N isotope composition (${\delta}^{15}N$) of crop reflects the kind of fertilizer (chemical or organic) applied to field, a pot experiment was conducted. Corn (Zea mays L.) was cultivated under greenhouse conditions for 70 days. Composted pig manure and urea were applied at 0 and 0 (C0U0), at 0 and 300 (COU2), at 300 and 0 (C2U0) and at 150 and $150kg\;N\;ha^{-1}$ (C1U1), respectively. The ${\delta}^{15}N$ values of composted pig manure and urea were + 13.9‰ and -2.3‰, respectively. The ${\delta}^{15}N$ values of whole parts (roots + stems + leaves + grains) were + 12.7, + 12.9, + 14.0 and + 13.0‰ for C0U0, C0U2, C2U0 and C1U1 treatments, and were not significantly affected by the application of isotopically different N sources (P<0.05). However, leaves or grains showed significantly (P<0.05) different ${\delta}^{15}N$ values between treatments. The ${\delta}^{15}N$ values of leaves and grains were + 14.3 and + 16.2‰ for C2U0, +13.2 and +13.9‰ for C0U0, +10.1 and + 12.6‰ for C1U1 and +10.1 and +12.4‰ for C0U2 treatments. The different ${\delta}^{15}N$ values of corn from the values of N sources (compost and urea) applied to soil showed that the ${\delta}^{15}N$ values of corn were affected not only by the isotope composition of N source, but also by N pool mixing and isotope fractionation accompanying N transformation. This study suggests that although the ${\delta}^{15}N$ values of crop are not identical to the ${\delta}^{15}N$ values of N sources applied to fields, the application of isotopically different N sources such as compost and chemical fertilizer may result in qualitative difference in ${\delta}^{15}N$ values of crop.

  • PDF

Reservoir Trophic State and Empirical Model Analysis, Based on Nutrients, Transparency, and Chlorophyll-${\alpha}$ Along with Their Relations Among the Parameters (영양염류, 투명도 및 엽록소를 이용한 인공호 영양상태, 경험적 모델 분석 및 변수들 간의 상호관계)

  • An, Kwang-Guk;Kim, Jae-Kyeng;Lee, Sang-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • The purpose of this study was to determine trophic state, based on nutrients (TN, TP), transparency (SD), and chlorophyll-${\alpha}$ (Chl) and identify their empirical relations of TN-Chl, TP-Chl and Chl-SD depending on the dataset used along with dynamics of conductivity and suspended solids. Analysis of trophic states showed that more than half of 36 reservoirs were judged as eutrophic-hypertrophic conditions depending on the trophic variables. Seasonal values of TP varied by nearly 500% and showed greater in August than any other months. In contrast, TN varied within less than 90% and all monthly mean values of TN were never fall less than 1.2 mg L$^{-1}$ indicating low seasonal variations and high ambient concentrations (eutrophic-hypertrophic state). Analysis of empirical relations in the trophic variables showed that transparency had greater functional relations with Chl (R$^2$=0.31, p<0.001) than TP (R$^2$=0.15, p<0.001) and TN (R$^2$=0.20, p<0.001). Ratios of TN : TP in the ambient water indicated that most reservoirs showed a potential phosphorous limitation on the algal growth. Thus, algal biomass, based on Chl values, was more regulated by phosphorous than nitrogen. Analysis of linear regression model, based on log-transformed annual mean values, showed that only 30% in the variation of Chl was explained by TP (R$^2$=0.295, p=0.001, n=36) and 15% by TN (R$^2$=0.151, p=0.019, n=36). However, linear regression model, based on individual system, showed that Chl-TP model had strong positive relations (R$^2$=0.62, p=0.002, n=12), whereas the model had no any relations (p=0.892, n=12). Overall, our data suggested that averaging effect in the empirical model developments may influence the significance in the statistical analysis.

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.